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INTRODUCTION

The ocean quahog Arctica islandica (Linnaeus,
1769) is a large, commercially important bivalve mol-
lusc, widely distributed along the continental shelf
on both coasts of the North Atlantic basin (Merrill &
Ropes 1969, Dahlgren et al. 2000). The species
ranges from Cape Hatteras, NC, USA, to Newfound-
land, Canada, and from the Bay of Cadiz in Spain
north to Iceland (Merrill & Ropes 1969, Dahlgren et
al. 2000, for further documentation of the North
Atlantic range, see Brey et al. 1990, Rowell et al.
1990, Witbaard et al. 1999, Ragnarsson & Thórarins-

dóttir 2002, Butler et al. 2009). The species has a life
span exceeding 500 yr (Butler et al. 2013), growing to
a maximum size of approximately 130 mm, with ani-
mals >200 yr old commonly encountered.

A major ocean quahog fishery has existed on the
Mid-Atlantic continental shelf of the USA since 1967
(NEFSC 2009). Annual ocean quahog landings
peaked at 22 000 mt in 1992; US landings in recent
years (2010−2014) have ranged from about 14 000 to
16 000 mt (NEFSC 2009). A small commercial fishery
for ocean quahogs began in Iceland in 1995 but was
limited to 1 fishing vessel (Thórarinsdóttir & Jacob-
son 2005, Thórarinsdóttir et al. 2010); the Icelandic
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fishery is currently artisanal and catches have been
negligible since 2005.

Recent studies suggest that recruitment on
Georges Bank has been nearly continuous since the
late 1800s, though at low levels to balance the low
mortality characteristic of long-lived species (Pace et
al. 2017). The stock as a whole is considered to have
been at carrying capacity since its initial survey in
1980 (NEFSC 2009, 2017). Yet, the size at which
ocean quahogs fully recruit to the fishery is not
reached until several decades following settlement
(Ropes et al. 1984, Rowell et al. 1990, Thórarinsdóttir
& Steingrímsson 2000); accordingly, an increase in
stock productivity, the expected result of fishing
down a stock from carrying capacity, would not be
evident to the survey gear for many years (Powell &
Mann 2005). This poses a problem for fishery man-
agement because long-term recruitment potential
cannot be gleaned from the recruitment index
obtained over the history of the survey time series
which extends back a mere 35 yr. To better define the
characteristics of a sustainable ocean quahog fishery,
which includes understanding the time line for
rebuilding, should overfishing occur, and the sensi-
tivity of the stock to potentially decadal or longer
periods of low recruitment, development of a long-
term recruitment index is necessary. Such data are
needed to inform fishery managers of the frequency
and significance of recruitment events in ocean qua-
hog populations throughout the range of the stock
(Pace et al. 2017).

In addition, recruitment rates for long-lived species
are generally thought to be inherently low. Brood-
stock-recruitment relationships for long-lived finfish
often show low steepness, a characteristic of a spe-
cies with limited recruitment capacity and an ex -
tended time frame for population recovery following
a population decline (Goodwin et al. 2006, Mangel et
al. 2010). The same may be true for many long-lived
invertebrates, although documentation is more lim-
ited (e.g. Peterson & Summerson 1992, Peterson
2002). Indeed, broodstock−recruitment relationships
are rarely reported (e.g. Hancock 1973, Honkoop et
al. 1998, Kraeuter et al. 2005, Powell et al. 2009).
Often, recruitment rates are low despite high fecun-
dity due to larval and post-settlement mortality (e.g.
Thorson 1950, Ólafsson et al. 1994, van der Meer
2003), but Allee effects and broodstock limitation can
also be present (Peterson & Summerson 1992,
Kraeuter et al. 2005). For ocean quahogs, the time
necessary to build a population to carrying capacity
after initial colonization or to rebuild a population
after overfishing and the ability of the population to

remain at carrying capacity through years of variable
recruitment and mortality is poorly known. Ocean
quahogs, being extremely long-lived and certainly
the most successful of the extremely long-lived non-
colonial marine invertebrates, offer a particularly
interesting opportunity to study the population
dynamics of recruitment during population expan-
sion and when at carrying capacity. Indeed, Pace et
al. (2017) suggest that recruitment capacity is high,
but scarcely evident at carrying capacity, where only
limited recruitment is necessary to balance the low
natural mortality rate characteristic of the species.

The objective of this study was to evaluate long-
term recruitment patterns of ocean quahogs from
3 sites in the Mid-Atlantic and to compare these pat-
terns to that of the Georges Bank population previ-
ously described by Pace et al. (2017) using the age
frequencies of the existing populations. Sites were
chosen to cover much of the range of the stock in US
waters to establish the feasibility of applying a single
age−length key to length−frequency data routinely
obtained by the stock survey (NEFSC 2017) and to
identify geographic variations in recruitment timing
and periodicity, such variations being well known for
other commercially important shellfish in the region
(e.g. Spisula solidissima, Weinberg 1999, Chintala
and Grassle 2001; Placopecten magellanicus, Mc -
Garvey et al. 1993, NEFSC 2014). For A. islandica,
significant recruitment events may occur on decadal
to vicennial time scales (Steingrímsson & Thórarins-
dóttir 1995, Powell & Mann 2005, Thórarinsdóttir &
Jacobson 2005, Harding et al. 2008). However these
studies, being based primarily on juvenile surveys,
offer information on only a small fraction of the
extended life span of this species and cover a
restricted geographic range; thus their application to
the extended life history of the population is unclear.
In addition, in most cases, these studies addressed a
species at or near carrying capacity, with the limita-
tion on recruitment anticipated to co-occur (Hughes
1990, Brooks & Powers 2007).

Hennen (2015) assumed a low steepness value in
specifying a theoretical broodstock−recruitment re -
lationship for A. islandica. Low steepness invokes
one of 2 reproductive strategies for long-lived organ-
isms. In one case, recruitment capacity is low and the
species relies on limited but routine recruitment over
its lifetime, hence low steepness. Alternatively, re -
cruitment capacity is high, but its potential infre-
quently realized. This may be expressed by the
absence of a broodstock−recruitment relationship.
The latter, often termed bet-hedging (Stearns 1976)
may better apply to bivalves, whereas the former
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may better apply to long-lived fish (Hancock 1973,
Goodwin et al. 2006). Regardless, the 2 alternatives
lead to substantively different management options.
Hennen’s (2015) analysis stressed the importance of
understanding recruitment over centurial time scales
and this is one focus of the present study. The
approach used here includes estimation of the age of
individuals by counting annual growth lines using
photographs of a cross-section of the hinge plate, fol-
lowed by development of age−length keys for each
site from the observed ages-at-length. These then
were used to reconstruct the population age fre-
quency from which an evaluation of long-term
recruitment patterns could be deduced. This data-
base is then used to address the feasibility of geo-
graphic scale assumptions of uniformity in age−
length keys and the dynamics of recruitment at cen-
turial scales, knowledge on both being essential to
the sustainable management of the ocean quahog
fishery.

MATERIALS AND METHODS

Sample collection

Ocean quahog samples were collected from New
Jersey and Long Island from the F/V ‘Christy’ in
March 2015; samples from Southern New England

and Georges Bank (Pace et al. 2017)
were collected in May 2015 from the
F/V ‘Pursuit’ (Fig. 1). All samples
were collected using hydraulic
dredges towed for 5 min. Ocean qua-
hogs with shell lengths (anterior−pos-
terior dimension) ≥80 mm were tar-
geted by this project, as the sampling
gear is nearly 100% selective for this
size range (NEFSC 2017). All sites
except the Southern New England
site required multiple tows in order to
obtain sufficient sample sizes; how-
ever, all additional tows were taken
from as close to the same location as
possible so that each sample com-
prised animals from the same local
population. To ensure that each sam-
ple contained an adequate number of
the largest and presumably oldest
animals present in the populations,
all live ocean quahogs retained by the
dredge were measured to capture the
size frequency of each population.

From this group, about 800 animals ≥80 mm, rela-
tively evenly distributed across the size range cap-
tured, were retained for further study.

Sample preparation

Shucked clams were dipped in diluted bleach,
rinsed in water, and air-dried. Intact valves were
labeled and archived. At each site, at least 20 clams
from each 5 mm size class were haphazardly chosen
from the collection, starting with the 80 to <85 mm
size class through the maximum available size for
each site. Hereafter, the size classes will be referred
to using the lower size class boundary, e.g. 80 mm for
animals 80 to <85 mm.

Each clam chosen to be aged was sectioned,
ground, and polished (see details in Pace et al. 2017).
The hinge plate of each clam was photographed
using either a high-definition Olympus DP73 digital
microscope camera using the Olympus cellSens
micro scope imaging software or a high definition
Olympus America microscope camera using Olym-
pus MicroSuite software. Neither camera could cap-
ture a single image of the hinge plate at a magnifica-
tion high enough to discriminate annual growth
lines; multiple images of the hinge were required to
produce a complete hinge image. The Olympus
cellSens microscope imaging software automatically
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stitched images of the hinge together; the hinge
photo graphs taken using the alternative software
were stitched together using the open source soft-
ware ImageJ (FIJI) to create a complete image of the
hinge section. Both cameras provided images at a
resolution sufficient to distinguish annual growth
lines without the use of acetate peels or staining
methods. To estimate the age for each clam, its hinge
image was examined and each annual growth line
annotated using the ObjectJ plugin in the software
ImageJ (Fig. 2).

Creating age−length keys

As shown in Pace et al. (2017), the range of ob -
served ages for a sample size of less than 200 individ-
uals at a sample site greatly underrepresents the
entire age range present in a population. Conse-
quently, estimating the probability of age-at-length
based only on observed ages likely biases the proba-
bility of any age occurring at a given length; in par-
ticular, some ages present in the population are not
observed (Pace et al. 2017). Thus, an age−length key
must be constructed from a sparse dataset. This is not
an unusual challenge (e.g. MacDonald & Pitcher
1979, Mohn 1994, Stari et al. 2010). In the case of A.
islandica, the age distributions were typically right-
skewed within each 5 mm size class at each site. That
is, animals of younger age had a higher probability of
occurrence than animals of older age within a size
class, and a long tail comprising the rarer and much
older animals was present. To address the problem
posed by unobserved ages within the observed age
range without having knowledge of the underlying
age distribution within each size class, 4 metrics
were defined for each set of ages within each 5 mm
size class; namely, the mean age, the variance in age,

the mean differential in years between consecutive
ages ordered from youngest to oldest, and the vari-
ance in the mean differential between consecutive
ages. Sets of ages were simulated within each 5 mm
size class using a Monte Carlo routine, and at least 10
individual sets that fell within a 10th percentile of the
position of the observed age group for all 4 metrics
were selected and considered valid estimates of the
age probability in addition to the observed group.
These age groups were used to construct the prob -
ability of age-at-length within each size class (for
 further details on the methodology used, see Pace et
al. 2017).

To investigate the representativeness of the set of
20 animals aged per 5 mm size class, a size class with
a particularly skewed distribution was chosen from
each site. This was a size class that was significantly
different from a random draw of ages within the
observed age range; that is, a size class with the age
distribution least likely to occur by chance based on
the 4 defined metrics previously described. An addi-
tional 20 animals were haphazardly chosen from the
original set of animals obtained that fell within that
size class. These animals were aged. This second set
of ages was compared to the first set using a permu-
tation test in which 1000 sets of ages were drawn
without replacement from the combined dataset and
the second set of ages was then compared to the
 distribution obtained from the probabilities of the 4
 metrics to determine the representativeness of the
second set of ages and, by inference, the additional
10 sets of simulated ages (Noreen 1989).

Most cases represented a random draw from the
combined dataset; this supported the assumption
that a sample size of 20 individuals within each size
class was sufficient to represent the age distribution.
For cases where the second set did not represent a
random draw from the combined dataset, the com-
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bined dataset was resampled again 1000 times,
each selection of 20 individuals again evaluated
using the permutation test, and the probability of
each metric recorded. In this way, the likelihood of
the original second set being fairly drawn from the
combined dataset could be evaluated. For example,
if the original second set of 20 was significantly dif-
ferent from the first for a given metric and that out-
come occurred only a few times out of the 1000
independently drawn sets of 20, this analysis would
suggest that the age distribution of the second set
drawn was highly unlikely to occur again by chance
if 40 different clams had been aged. To further
investigate the effect of significant differences in
age distribution between 2 sets of 20 individuals
from the same size class, 2 population age fre -
quencies were generated, the first using the age
estimates from the original sample only; the second
using the ages from the resample. A Kolmogorov-
Smirnov 2-sample test (Daniel 1978) was run to
determine if the 2 population age−frequency distri-
butions differed significantly.

The age−length keys were then applied to the
complete size distribution for each site to generate a
population age frequency, which specifies the pro-
portion of individuals at each age within each popu-
lation. Recruitment patterns can be interpreted from
the number of individuals present at each age under
the assumption that mortality rates have not varied
much over time, as variations in numbers at age
inherently confound variability in recruitment and
variability in mortality. The expected conservatism of
adult mortality rate is supported by the presence of
animals exceeding an age of 200 yr in the population.
For this reason, large changes in proportional contri-
bution between age classes is interpreted as evi-
dence of variations in recruitment.

RESULTS

Age and length dynamics

The size−frequency distributions obtained from the
measurement of all individuals retained by the
dredge at each site are shown in Fig. 3. The total
number of clams measured was 2448 (New Jersey),
2443 (Long Island), and 2453 (Southern New Eng-
land). Of these clams, 189 individuals ≥80 mm were
aged from New Jersey, 154 from Long Island, and
118 from Southern New England.

The distribution of observed ages-at-length for
ocean quahogs from each site is shown in Fig. 4.
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Within each size class, ocean quahog populations
exhibited a large age range (Fig. 5). The age and size
distributions at each site are shown in Table 1. Clams
aged from New Jersey ranged from 24 to 220 yr, cov-
ering an age range of nearly 200 yr. The age range
was nearly the same for Long Island clams: 44 to
248 yr. Clams from Southern New England covered a
narrower age range from 73 to 172 yr old. Pace et al.
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(2017) reported that clams from a Georges Bank site
ranged from 54 to 198 yr. A large size range at age
also exists throughout most of the observed age
range at all sites (Fig. 4). That is, the age and length
relationship for market-size ocean quahogs at each of
these sites is highly variable whether described in
terms of age-at-length or length-at-age. Moreover, at
all sites, the intermediate size classes displayed the
largest age ranges. Ages in the 95 mm size class from
New Jersey spanned 108 yr. Long Island had the
largest age range of 188 yr in the 95 mm size class.
In the Southern New England population, ages
spanned 93 yr in the 90 mm size class.

The test statistics for each metric used to identify
whether the sampled ages within each size class
were randomly distributed are shown for each site in
Table 2. Shaded boxes indicate cases where the dis-
tribution of observed ages was unlikely to be ob -
tained from a random draw of ages within the
observed age range. Size classes with the most non-
random distributions varied throughout the size-class
range. In New Jersey, the 90 mm and the 115 mm
size classes had the most non-random age distribu-
tions, which might have been anticipated consider-
ing the old-age outliers present in both size classes
(Fig. 5). The Long Island population provided the
most non-random distributions, with 3 of 4 metrics
significantly non-random in the 3 smallest size
classes, whereas the 2 largest size classes did not
diverge from a random distribution in any metric.
The Southern New England population had 1 size
class (90 mm) with 3 of 4 metrics significantly di -
verging from random, with the most non-random dis-
tribution coinciding with the size class with the
largest age range. Pace et al. (2017) found a similar
pattern in a Georges Bank population in the 100 mm
size class, which exhibited the largest age range of
125 yr, with 3 of 4 significantly non-random metrics.

Based on the statistics shown in Table 2, 10 age
groups having a similar age distribution pattern were
obtained as simulated datasets. These distributions
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Region Age Birth Largest 
range date animal 
(yr) range (mm)

New Jersey 24−220 1795−1991 125
Long Island 44−248 1767−1971 115
Southern New England 73−172 1843−1942 105
Georges Bank 54−198 1817−1961 116

Table 1. Observed age range and largest animal aged at 
each site. Georges Bank data from Pace et al. (2017)
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retained the statistical characteristics for the 4 met-
rics in that they fell within the shown percentiles and
were used in addition to the observed age dataset to
establish the probabilities for age-at-length within
each size class.

Representativeness of aged subsets

Based on the statistics shown in Table 2 and Fig. 5,
one size class with a highly skewed age range was
chosen from each site and an additional 20 ocean
quahogs were aged to evaluate the representative-
ness of the original 20 aged animals. Size classes with
additional animals sampled were as follows: 95 mm
(New Jersey) and 90 mm (Long Island and Southern
New England). Table 3 shows the ages for the
original and resampled set of animals from each site.
Analyses from a Georges Bank population reported
by Pace et al. (2017) are also included. Shaded boxes
indicate cases where an age present among the re-
sampled 20 individuals was also present in the origi-
nal set of ages. At all sites, not more than 25% of a
second set of 20 animals were of an age identified in

the earlier set of 20. Taking the 40 animals as a whole,
duplicate ages occurred in no more than 5 cases in
any of the 4 size classes sampled twice and as few as
1 in the Long Island and 2 in the Georges Bank cases.
Triplicates occurred only twice, both in the Southern
New England dataset. Pace et al. (2017) reported that
only 2 ages were found in both datasets for a Georges
Bank site. Thus, at all sites, the addition of a second
set of 20 animals added a large number of ages that
were not represented in the first set of ages, confirm-
ing that many more animals would need to be aged in
order to establish an age−length relationship based
solely upon observed ages and lengths.

For each site, a permutation test was run to deter-
mine whether the distribution of age estimates from
the resampled set deviated significantly from that of
the combined set of ages. At 2 of the 3 sites, in addi-
tion to the Georges Bank site (Pace et al. 2017), none
of the 4 metrics were significantly different; that is,
the resample dataset could be obtained as a random
draw from the combined set of ages (Table 4). The
absence of test metrics diverging from random at the
Georges Bank, Long Island, and Southern New Eng-
land sites suggests that the age distribution derived
from the first 20 animals aged adequately repre-
sented the distribution function for the age range
within that size class. As the analyzed size classes
were chosen because the age distributions were ones
showing significant deviations from a random distri-
bution of ages, by inference, the age distributions
for the remaining size classes are likely also to be
representative.

In contrast to the other 3 sites, 3 of 4 test metrics
for the resample differed significantly from the com-
bined dataset for the New Jersey population
(Table 4), suggesting that the first sample of 20 did
not sufficiently describe the age distribution within
this size class. Perusal of Table 3 shows that the pri-
mary difference between the 2 datasets is that the
resample contains many ages falling within a large
age gap (116 to 153 yr) in the first set. These 2

88

NJ1 NJ2 LI1 LI2 SNE1 SNE2 GB1 GB2

65 73 57 76 79 80 73 81
69 81 60 82 81 87 75 82
70 84 70 84 84 88 79 86
73 89 71 87 84 91 99 90
74 90 72 96 85 92 101 104
75 104 77 99 90 93 103 107
77 116 79 99 91 93 106 109
79 131 94 100 91 93 106 113
81 134 96 115 95 99 107 117
86 134 98 127 103 100 110 122
89 138 117 141 104 102 112 122
90 140 131 156 106 103 114 123
92 141 137 163 114 103 114 125

105 143 145 168 118 103 115 128
105 146 169 183 120 106 118 131
109 146 177 189 128 106 121 135
112 165 221 219 129 110 134 139
113 169 227 222 132 112 165 152
116 171 233 225 162 140 182 166
153 173 240 243 172 141 198 198

Table 3. Age data from the (1) original 20 clams chosen to be
aged and (2) the resample of 20 additional individuals for
the New Jersey (NJ) 95 mm size class, the Long Island (LI)
90 mm size class, the Southern New England (SNE) 90 mm
size class, and the Georges Bank (GB) 100 mm size class
(Pace et al. 2017). Shaded boxes highlight ages present in
the first set of 20 that were also observed in the second set of
20. Note the selected size classes correspond to those classes 

with outliers and extended age ranges (see Fig. 5) 

NJ LI SNE

x– 0.001 0.210 0.201
var 0.011 0.814 0.097
d x– 0.126 0.501 0.196
d var 0.995 0.706 0.601

Table 4. Permutation test statistics (p) for the observed mean
(x–), observed variance (var), observed mean of the differ-
ence in ages of animals ordered by their age (d x–), and the 

observed variance of these differences (d var)
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datasets came from the same group of clams, each
chosen haphazardly from the group. To further
examine this issue, the combined set of 40 was ran-
domly split in half 1000 times and the permutation
test run each time to evaluate the probability of
obtaining a split providing 2 datasets as deviant as
were the observed 2. In all 3 cases, the observed
probability of each test metric occurred less than 7
times out of 1000, twice for the observed mean, thrice
for the observed variance, and 7 times for the
observed variance in the differences obtained from
the set of ordered ages. These results suggest that
obtaining the observed split from the set of 40 aged
animals is statistically highly improbable. By infer-
ence, one would assume that a second set of 20
drawn from any of the remaining size classes would
demonstrate a selection of ages diverging in detail
from the original set as shown in Table 3, but not
diverging in the distribution function for that size
class. As it was infeasible to age several scores of ani-
mals within each size class from each population due
to the time required, even using the advanced cam-
era technology employed in this project, and because
at the other 3 sites 20 animals sufficiently described
the age distribution of the most extreme size class, 20
animals within each size class were taken as an
acceptable sample size to describe the dispersion of
ages within a size class.

Age−length keys

Age−length keys for New Jersey (Table 5), Long
Island (Table 6), and Southern New England
(Table 7) were generated by establishing the proba-
bility for each age within each size class, based on
the observed age group plus the 10 simulated age
groups for each size class. For simplicity of presenta-
tion, each key displays decadal age groups and size
classes; zero probabilities in the tables indicate the
absence of animals at that size and age given the
sampling constraints. Population age frequencies
shown subsequently, however, were obtained using
the probabilities of each observed age in each size
class rather than the decadal age groups shown in
Tables 5−7.

The population age frequencies are shown in the
Supplement at www. int-res. com/ articles/ suppl/ m585
p081_ supp. pdf for New Jersey (Table S1), Long Island
(Table S2) and Southern New England (Table S3).
Pace et al. (2017) provide an additional example from
a Georges Bank population. The age frequencies dis-
play the estimated number of individuals at age in
the population sample obtained at each site. The
population age frequencies were generated from
age−length keys that included observed ages and
the 10 simulation groups. The population age fre-
quencies, had the 10 simulated groups not been

89

Age (yr) 80 mm 85 mm 90 mm 95 mm 100 mm 105 mm 110 mm 115 mm 120 mm

20 0.335 0.167 0.000 0.000 0.000 0.000 0.000 0.000 0.000
30 0.421 0.179 0.025 0.000 0.000 0.000 0.000 0.000 0.000
40 0.182 0.159 0.108 0.000 0.000 0.000 0.000 0.000 0.000
50 0.062 0.115 0.104 0.000 0.000 0.000 0.000 0.000 0.000
60 0.000 0.083 0.125 0.087 0.083 0.000 0.000 0.000 0.000
70 0.000 0.103 0.179 0.129 0.079 0.017 0.000 0.000 0.000
80 0.000 0.068 0.192 0.122 0.116 0.100 0.004 0.061 0.000
90 0.000 0.036 0.108 0.109 0.139 0.144 0.061 0.147 0.000

100 0.000 0.091 0.050 0.078 0.130 0.194 0.082 0.113 0.000
110 0.000 0.000 0.038 0.073 0.176 0.181 0.126 0.130 0.000
120 0.000 0.000 0.021 0.058 0.125 0.207 0.165 0.108 0.100
130 0.000 0.000 0.004 0.087 0.065 0.157 0.095 0.134 0.290
140 0.000 0.000 0.042 0.087 0.088 0.000 0.165 0.100 0.080
150 0.000 0.000 0.004 0.067 0.000 0.000 0.134 0.069 0.140
160 0.000 0.000 0.000 0.062 0.000 0.000 0.074 0.069 0.260
170 0.000 0.000 0.000 0.044 0.000 0.000 0.091 0.022 0.130
180 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000
190 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
210 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 0.000
220 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000

Table 5. New Jersey age−length key: for convenience, the probability of each decadal age group occurring within each size
class is provided. Population age frequencies derived in this study used the probability at each age rather than the decadal 

age group
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included, are shown in Tables S4−S6 for comparison.
The observed age frequencies clearly miss many
ages that one may expect are present in the popula-
tion (see Table 3) given the results of the resampled
size classes (Table 3), but are absent from the ob -
served dataset due to the small sample size (compare
Tables S1−S3 with Tables S4−S6).

Two additional age frequencies were generated for
the New Jersey site to address the issue of significantly
different results obtained from the permutation test

when the resample was included, the first
using only the original set of ages to repre-
sent the 95 mm size class and the second
using only the resampled ages. Significant
differences between the population age−
frequency distributions were not detected
(Kolmogorov-Smirnov 2-sample test, D201

= 0.108, p > 0.05), despite the significant
difference between the age distributions
of the 2 sets of 20 age estimates for this size
class. Thus, the differences in the age dis-
tributions of the 2 samples in the 95 mm
size class did not significantly affect the
population age-frequency distribution de-
rived for this population.

Population age frequency

The population age-frequencies for all 4
sites, in cluding the Georges Bank popula-
tion reported by Pace et al. (2017), are
shown in Fig. 6. The age structure differs
substantially throughout the New Jersey
to Georges Bank region, which encom-

passes the majority of the US ocean quahog stock.
The ocean quahog populations at the New Jersey
and Long Island sites have age ranges spanning at
least 200 yr. New Jersey had the youngest animals
that were fully recruited to the fishery, with animals
≥80 mm as young as the low 20s, indicating that
ocean quahog populations in New Jersey have the
most rapid growth rate of the 4 sites. Compare this to
the Southern New England site, where the youngest
animals ≥80 mm had ages in the low 70s.

Table 8 displays a summary of the age structures
including data from Pace et al. (2017). In all 4 cases,
the age structure is characterized by a long tail of rel-
atively rare old animals and an extended age range
of abundant younger animals, separated by a rapid
increase in numbers at age over a relatively short
time. In each case, the number of ocean quahogs in
the youngest age classes decreases. This is due to the
artificial truncation of the dataset at shell length
80 mm, not to a reduction in recruitment or an
increase in mortality. All sizes including young of the
year would have to be aged in order to completely fill
out the population age−frequency distribution.

Unlike the 3 other sample sites, examination of the
population age−frequency distributions (Fig. 6) re -
veals that the New Jersey population does not dis-
play a particularly long tail of low numbers of older
animals on the right side of the distribution. Few ani-
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Age (yr) 80 mm 85 mm 90 mm 95 mm 100 mm 105 mm 110 mm

40 0.154 0.154 0.118 0.000 0.000 0.000 0.000
50 0.245 0.231 0.140 0.069 0.000 0.000 0.000
60 0.146 0.159 0.127 0.092 0.000 0.000 0.000
70 0.146 0.163 0.127 0.055 0.000 0.000 0.000
80 0.110 0.140 0.086 0.062 0.016 0.000 0.000
90 0.075 0.077 0.100 0.069 0.041 0.000 0.000

100 0.059 0.022 0.031 0.069 0.012 0.000 0.000
110 0.015 0.000 0.072 0.067 0.008 0.007 0.048
120 0.000 0.000 0.050 0.057 0.020 0.059 0.138
130 0.027 0.050 0.040 0.051 0.090 0.027 0.229
140 0.019 0.000 0.027 0.042 0.119 0.035 0.138
150 0.000 0.000 0.004 0.021 0.107 0.087 0.131
160 0.000 0.000 0.004 0.046 0.144 0.099 0.138
170 0.000 0.000 0.004 0.037 0.107 0.115 0.159
180 0.000 0.000 0.009 0.032 0.078 0.131 0.013
190 0.000 0.000 0.050 0.032 0.099 0.091 0.000
200 0.000 0.000 0.004 0.041 0.028 0.087 0.000
210 0.000 0.000 0.000 0.042 0.028 0.067 0.000
220 0.000 0.000 0.000 0.028 0.041 0.059 0.000
230 0.000 0.000 0.000 0.032 0.049 0.051 0.000
240 0.000 0.000 0.000 0.046 0.004 0.067 0.000
250 0.000 0.000 0.000 0.000 0.000 0.011 0.000

Table 6. Long Island age−length key: for convenience, the probability of
each decadal age group occurring within each 5 mm size class is provided.
Population age frequencies derived in this study used the probability at 

each age rather than the decadal age group

Age (yr) 80 mm 85 mm 90 mm 95 mm 100 mm

70 0.190 0.116 0.059 0.031 0.033
80 0.372 0.238 0.131 0.095 0.042
90 0.295 0.333 0.154 0.090 0.084

100 0.140 0.216 0.181 0.150 0.096
110 0.000 0.095 0.154 0.072 0.180
120 0.000 0.000 0.125 0.100 0.197
130 0.000 0.000 0.086 0.040 0.100
140 0.000 0.000 0.063 0.113 0.138
150 0.000 0.000 0.013 0.118 0.046
160 0.000 0.000 0.009 0.168 0.071
170 0.000 0.000 0.020 0.018 0.004

Table 7. Southern New England age−length key: for con-
venience, the probability of each decadal age group occur-
ring within each size class is provided. Population age fre-
quencies derived in this study used the probability at each 

age rather than the decadal age group
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mals over 200 yr old were present, but the oldest rel-
atively common animals recruited circa 1835, with
the population expanding in size relatively continu-
ously from 1855 until approaching an asymptote
around 1900 when the population apparently stabi-
lized. The population consists of a small number of
animals over 140 yr, a larger number of animals
between 100−140 yr, and the largest number of ani-
mals <100 yr. An extended period of relatively low
recruitment occurred from 1950−1965, as indicated

by the reduction in the number of individuals present
between the ages of 50−65 yr.

The Long Island population has the longest tail,
suggesting that, with the exception of a particularly
large year class around 1880, the population re -
mained at low abundance from circa 1765 until
approximately 1895. After 1895, the population ex -
panded rapidly over about 40 yr and stabilized in ca.
1935. The population age structure in Long Island
consists of a small number of animals between 120−
255 yr, with the majority of the population between
the ages of 40−120 yr; no obvious hiatuses in recruit-
ment exist, however.

The Southern New England site has been occupied
by ocean quahogs since at least the 1840s, the short-
est record of occupation of the 4 sites. The population
apparently remained small in size until approxi-
mately 1900; 15 yr later, by 1915, the population had
apparently approached carrying capacity. The popu-
lation consists of a large number of animals between
about 70−100 yr old, fewer animals between 100−
115 yr old, and a consistently low number of animals
115−175 yr old (Fig. 6). Recruitment hiatuses are not
apparent.

91

Region Recruitment Recruitment 5th, 25th, 50th, 
expansion expansion 75th percentile 

start end age

NJ 1855 1900 30, 70, 121, 171
LI 1895 1935 50, 93, 147, 200
SNE 1900 1915 77, 97, 122, 147
GB 1890 1920 58, 88, 125, 162

Table 8. Summary of the age structure and period over which
rapid recruitment occurred at each site, including Georges
Bank (Pace et al. 2017). Expansion years are visually approxi-
mated from Fig. 6. Population age frequencies were used to
determine age percentiles. NJ: New Jersey; LI: Long Island; 

SNE: Southern New England; GB: Georges Bank
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As a comparison, the oldest animals aged from the
Georges Bank population, as previously described by
Pace et al. (2017), recruited about 200 yr ago, ca.
1815, after which the population remained small in
size for about 70 yr, as indicated by the small number
of animals older than 125 yr. Around 1890, the popu-
lation began to increase in size very rapidly, reaching
about half of its final asymptotic state in only 5−10 yr;
a second population expansion occurred around
1915 and approached a higher asymptote within ap -
proximately 5 yr. The population consists of a large
number of individuals between the ages of 65−100 yr,
with a smaller number of animals in the 100−125 yr
range. Following population expansion, recruitment
hiatuses are not apparent.

DISCUSSION

Age−length keys

The population dynamics of ocean quahogs are
highly variable over the species’ range. For the popu-
lations on the US East Coast, regional variation is
substantial, as is apparent from the age−length keys
presented in Tables 5−7. A single age−length key
cannot be used to estimate the age structure of popu-
lations from these different regions, considering the
large variation in age-at-length and the size range of
animals present. Fig. 4 demonstrates this large vari-
ability in both age-at-length and length-at-age, and
the differences in these distributions at each of the 3
sites illustrate why a single age−length key would not
result in accurate age estimates throughout the Mid-
Atlantic. The youngest animal aged in New Jersey
was 24 yr old at 80 mm, whereas the youngest animal
of comparable size from Southern New England was
73 yr old. Additionally, the variability in maximum
shell length at each site would prohibit accurate age
estimates throughout the species range; for example,
the maximum shell length of animals aged at South-
ern New England was 105 mm, where as the largest
animal aged from New Jersey was 125 mm.

The development of an age−length key for ocean
quahogs is challenged by the time required to age
individual animals, the age range present in most
populations, and the presence of individuals of many
ages within a narrow size range. Moreover, the pop-
ulation is not composed of a few dominant year
classes; indeed, dominant year classes appear to be
remarkably rare; even dominant decadal recruitment
events appear to be rare. This is true for the 4 popu-
lations reviewed here and would appear to be true

for other North Atlantic populations reported in the
literature (Steingrímsson & Thórarinsdóttir 1995,
Ridg way et al. 2012). Moreover and more unfortu-
nately, the range of ages in a narrow size class (e.g.
5 mm) is large and the dispersion of ages within a
narrow size class is rarely random, often being highly
right-skewed and typically differing substantively
from even the abutting lower and higher size class.
As a consequence, a large number of animals must
be aged from each size class to support a standard
age−length key for a specific population and a large
number of populations must be aged to characterize
the regional metapopulation. These types of chal-
lenges are well known (e.g. MacDonald & Pitcher
1979, Mohn 1994, Stari et al. 2010), but ocean qua-
hogs represent an extreme example of the common
challenge of ageing sufficient numbers of animals to
characterize the population demographic.

Consequently, any age-dependent analysis of pop-
ulation dynamics requires a way to estimate age-at-
length from a sparse dataset. Harding et al. (2008)
approached this problem for small and mostly juve-
nile ocean quahogs by applying a Taylor’s power law
correction. Essentially, they assumed a normal distri-
bution of ages-at-length with an expanding variance
as the age increased. For animals early in their life
history, this assumption is generally appropriate (e.g.
Craig & Oertel 1966, Hofmann et al. 2006) as it
proved to be in the case of Harding et al. (2008). Hof-
mann et al. (2006) provided a mathematical basis for
the description of population age structure based on
a bivariate normal distribution function with an in -
creasing right skew with increasing age. Ocean qua-
hogs represent an extreme case in which many age
distributions at size are represented by an extended
right skew. Consequently, in this study, we utilized
an approach that assumed that the age distribution
function as observed in a length class from a
restricted set of aged animals, 20 in this case, was
sufficient to define the age distribution function for
the length class. We also assumed that the set of ages
observed was a small subset of the sets of ages that
might be obtained that remained true to that age dis-
tribution function. We tested this in several ways by
focusing on a few length classes that contained the
most non-random distribution of ages across the
observed age range. Despite the significant differ-
ence between the age distributions of the original
and resampled animals from the 95 mm size class for
the New Jersey population, these analyses suggest
that a sample size of 20 animals sufficiently repre-
sents the age distribution within each size class to
develop an age−length key supporting the evalua-
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tion of general aspects of the age−frequency distribu-
tion, such as periods of curtailed recruitment, the
presence of strong year classes, periods of population
expansion, and the timing of initial colonization that
gave rise to the current populations. Each of these
can be estimated from this dataset at all 4 sites.

Details, however, are likely not clearly revealed.
Whereas 20 ocean quahogs per 5 mm size class may
accurately describe the age distribution, the number
of new ages present in the second sample of 20 indi-
viduals (Table 3) affirms the postulate that many
ages are present in any 1 size class and that a large
number of individuals would need to be aged to
accurately identify the full number of ages present
and to permit small-scale differences in the degree to
which certain ages are better represented than oth-
ers to be distinguished.

A further note is that the additional ages obtained
in the second resampling but not observed in the first
sampling filled in a gap in the original dataset in
almost every case. Thus, for example, the second
resampling from New Jersey added additional ani-
mals in the younger fraction of the age range, as
would be anticipated as the relatively younger ages
are disproportionately abundant in nearly all size
classes. However, the first 20 animals exhibited a
large gap in ages between 116 and 153 yr old. Fully 9
of the 20 ages of the resampled individuals fell into
this age gap. Similarly, for Southern New England,
the second sampling showed a large age gap
between 112 and 140 yr old. Six of 20 animals in the
first sampling fell into this age gap. For the Georges
Bank dataset reported by Pace et al. (2017), the first
sample of 20 showed an age gap between 121 and
134 years old. Six of 20 individuals in the resampling
fell into this gap. By inference, age gaps in the
datasets in most cases evidence under-sampling
rather than recruitment lulls and, in fact, clear inti-
mations of decadal or multidecadal hiatuses in
recruitment or below average recruitment are rare in
these datasets.

Thus, the probability that the dataset presented
here represents a complete survey of all ages present
in the population is extremely low and subtle details
showing, for example, variations in recruitment that
might be anticipated by short-term climate cycles
such as the North Atlantic Oscillation, are unlikely to
be resolved. The primary source of error, however, is
in the poor resolution of the long tail of old animals
present in most of the size classes; these animals are
relatively rare in the population and their presence
very likely underestimates the full range of older
ages in the population age frequencies.

Age frequencies and population dynamics

The rarity of old animals in the population suggests
that animals older than the oldest animal aged may
have been missed. However, the known long life
span of ocean quahogs, our oldest animal being less
than half the oldest age known (Schöne et al. 2005c,
Ridgway & Richardson 2011) and the low mortality
rate suggest that animals older than the ones ob -
served are indeed rare. Ocean quahogs shells are
widely distributed on the continental shelf along the
northeastern coast of the USA (Marchitto et al. 2000,
Powell et al. 2017) and the species has an extended
fossil record (e.g. Goodfriend & Weidman 2001,
Williams et al. 2009, Wanamaker et al. 2011, Crippa
et al. 2016). One presumes that their range has
shifted repeatedly over prehistoric and historic time
with long-term changes in climate. One interpreta-
tion of the extended tail of old ages in the popula-
tions’ age−frequency distributions observed in this
study is that the ocean quahog populations of the
northeast US continental shelf most recently colo-
nized the presently inhabited area 200−250 years BP.
Very little is known about the distribution of ocean
quahogs along the northeast US coast over historic
time, but recent evidence from Georges Bank shows
that an offshore shift in range had occurred prior to
the initiation of the National Marine Fisheries Serv-
ice survey program in 1980 (Powell et al. 2017). We
suggest that the long tail in the age distributions
record the timing of such an event throughout the
northeast continental shelf of the USA.

Basing interpretation on this premise, and recalling
that sampling was likely insufficient to fully describe
the age frequencies of the oldest living animals at any
of the 4 sites, the 2 southern sites displayed the earli-
est inhabitation by ocean quahogs, beginning ap-
proximately 250 yr ago in Long Island, with evidence
of recruitment 220 yr ago in New Jersey. Colonization
of the Southern New England site seems to have be-
gun approximately 170 yr ago, and the earliest inhab-
itants of sampled population on Georges Bank re-
cruited about 200 yr ago. All of the populations
experienced a period of rapid expansion to what is
presumed to be carrying capacity, consistent with the
most recent population dynamics assessment that
concluded that A. islandica was at carrying capacity
prior to 1980 and continues to be near this abundance
level (NEFSC 2017). Interestingly, the populations at
the northern sites began to expand fairly rapidly in
the late 1800s and approached carrying capacity
within about 15 yr in Southern New England and ap-
proximately 30 yr on Georges Bank. At the southern
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sites, although ocean quahogs apparently had been
present longer than in the northeastern areas, the
New Jersey population took nearly 80 yr to approach
carrying capacity even though population expansion
began much earlier, at around 1835, whereas initia-
tion of the population at the Long Island site began
approximately contemporaneously with the Southern
New England and Georges Bank populations.

The extended population expansion recorded by
the New Jersey population would be consistent with
a population at the southern end of the range. For a
species with a circumboreal distribution, New Jersey,
being situated farther south than is typical of the
 species’ range, is in an area presumably nudging the
maximum high temperature tolerance of the species.
Increased periods of high bottom-water tempera-
tures might inhibit survival of newly settled individu-
als when compared to areas with a more consistently
suitable temperature range. Additionally, the larval
supply and subsequent recruitment may have been
more limited if this population was farther from a
source population. Furthermore, al though consis-
tently small numbers of older individuals were pres-
ent in the Long Island population for about 130 yr,
that population did not exhibit rapid growth until the
early 1900s, a distinctly longer period at low abun-
dance than observed for the 2 populations to the
northeast, after which the population approached
carrying capacity within about 25 yr.

Pace et al. (2017) suggested that the most recent
phase of recruitment on the northeast US continental
shelf by ocean quahogs co-occurred with the ending
of the Little Ice Age, an epoch that concluded in the
first half of the 19th century (Schöne et al. 2005b,
Mann et al. 2009, Cronin et al. 2010). Moore et al.
(2017) recorded significant warming trends in the
northwest Atlantic Ocean beginning in the middle of
the 19th century consistent with this climate change.
Warming bottom-water temperatures would have
initiated a range shift to areas that were previously
unoccupied. This could explain why the oldest ani-
mals are found at the southern sites, as these regions
would have warmed up before the more northern
sites. Regardless, once the initial recruits began to
inhabit the northeastern US continental shelf where
they are found today, the populations remained at
low levels for an extended period. This is evident
from the long tail in the population age frequency
(Fig. 6); a time span of nearly 150 yr in Long Island,
about 70 yr on Georges Bank, about 55 yr in South-
ern New England, and presumably so many years off
of New Jersey, as indicated by the rarity of animals
over the first 60 years of colonization.

Like most bivalves, maturity in ocean quahogs is
more clearly dependent upon length rather than age
(Powell & Stanton 1985, Steingrímsson & Thórarins -
dóttir 1995), with 50% of ocean quahogs reaching
 maturity at a shell length of about 60 mm in the Mid-
Atlantic (NEFSC 2017), similar to a report by Thóra -
rinsdóttir & Jacobson (2005) of Icelandic populations
reaching 50% maturity at 64 mm shell length. Ocean
quahogs that recruited when these populations were
initially established likely did not reach maturity for
several decades following settlement due to slower
growth expected in colder water (Schöne et al. 2005a),
which is one possible cause of the time lag between the
establishment of populations and the rapid population
growth. That is, only after many years would the newly
established population be able to contri bute to its own
recruitment. From this perspective, the multidecadal
gap in ages between about 180 and 215 yr for the New
Jersey dataset might suggest that a long tail is actually
present in this population, but at an abundance not
well recorded by this study’s sampling intensity.

Oddly enough, the Long Island site apparently
experienced colonization prior to the northern sites,
yet the rapid population expansion occurred at the
Georges Bank and Southern New England sites prior
to the expansion in Long Island. Considering the
extended period of time of up to 60 d that ocean qua-
hog larvae can remain in the water column (Lutz et
al. 1982, Mann 1985), long-distance transport of lar-
vae would be possible. Larval connectivity at mid-
shelf where ocean quahogs are found is not well
understood. At shallower depths, net transport is
west and south alongshore from New England to
New Jersey, with a larval retention gyre operating on
Georges Bank (Zhang et al. 2015, 2016) and with off-
shore transport occurring on the continental shelf
south of Hudson Canyon, particularly in the fall.
Although larvae spawned in the south possibly could
reach the Southern New England and Georges Bank
sites, a more likely original larval source for coloniza-
tion is from the northeast, where populations have
existed for extended periods of time (Dahlgren et
al. 2000, Wanamaker et al. 2009). In fact, the fossil
record for ocean quahogs dates at least back to
5000−8000 BP off the western coast of Greenland
(Funder & Weidick 1991). Wanamaker et al. (2008)
reported that ocean quahogs have been present in
the Gulf of Maine at least since 1030 ± 78 AD.

While speculative, one possible source population
for the Mid-Atlantic colonization is documented by
the presence of ocean quahogs in the northwest
Atlantic Ocean for several hundred years prior to the
establishment of the New Jersey and Long Island
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populations. The incongruity in this ready alternative
is that the oldest animals in the present dataset came
from the 2 southern sites. The fossil record of ocean
quahogs in the Gulf of Maine suggests that the initial
populations in the western Atlantic Ocean may have
inhabited warmer and shallower waters, as the fossils
were collected at a water depth of 38 m (Wanamaker
et al. 2009), and Powell et al. (2017) recently reported
ocean quahog shells at shallower depths on Georges
Bank than presently occupied by the living popula-
tion, interpreted by them as clear evidence of a his-
torically recent range shift. Thus, an alternative
source population for the southwestern sites might
be animals living further inshore than they do today.
Regardless, explanation for the delayed response at
the Long Island site between initial colonization and
subsequent population expansion remains uncertain;
nevertheless, the possibility that net larval transport
south out of the Long Island region may have
restricted population expansion off Long Island can-
not be discounted and would be consistent with a
recent evaluation of surfclam connectivity in the
Mid-Atlantic Bight (Zhang et al. 2016).

Unexpectedly little evidence exists of strong year
classes in this dataset. Two potential year classes are
visible at the Long Island site both early in the popu-
lation record, the first smaller year class occurring
circa 1820, and the second larger year class occurring
in approximately 1880. A vague indication exists of a
possible year class in New Jersey that probably oc -
curred circa 1845. In both cases, evidence for strong
year classes, if any, only exists early on, prior to the
population expansion, arguably during a time when
the local population was not self-recruiting. As New
Jersey and Long Island are the 2 most southern sites,
it is conceivable that these populations were farther
from the recruitment source of the early populations,
which could explain the less consistent recruitment
into these populations early in their history as com-
pared to the 2 northern sites. Once population
expansion occurred, substantial periods of low re -
cruitment are almost nonexistent, with the only obvi-
ous case being the decadal trough in recruitment,
perhaps not surprisingly, at the most southern site,
New Jersey, from 1950−1965, interestingly coinci-
dent with the most recent period of declining temper-
atures in the Mid-Atlantic Bight (Nixon et al. 2004).

Fishery implications

Ocean quahogs support an East Coast commercial
fishery that began ca. 1967 and expanded in the early

1980s. The majority of fishing effort from the start of
the fishery in 1967 was off Delmarva and southern
New Jersey until the early 1990s when ocean quahog
landings peaked, after which the fishery began to shift
northwards to the south of Long Island and Southern
New England (NEFSC 2009). As commercial dredges
are selective for animals ap proximately >80 mm, the
fishery removes the larger, older clams. Clams that
were fully recruited to the fishery when it began have
been fished for a long time, unlike the small clams that
were unavailable to the dredge for some period of the
last ~35 yr. Thus, smaller clams may be overrepre-
sented in the sampled populations compared to the
larger clams that were available to the fishery for a
longer period of time. Of the populations sampled, the
New Jersey population would likely be the one most
influenced by the fishery, as this region has been a
major focus area for the fishery for much of the last
~35 yr, including the time period when commercial
ocean quahog landings were highest (NEFSC 2009).
Influence by the fishery on the population age struc-
ture may also be present in Long Island and, to a much
lesser extent, in Southern New England.

Several lines of evidence suggest that the fishery
has not materially influenced the age frequencies re-
ported herein. (1) The fishing mortality rate over the
history of the fishery has never exceeded the natural
mortality rate and, for most of the time, has been well
below it (NEFSC 2009, 2017), i.e. the fishery has had
little impact on the stock. (2) The selfsame trends in
the age frequencies observed at the 3 fished sites are
also present in the Georges Bank populations, al-
though this population has rarely been fished and, in
fact, was closed to fishing over much of the historical
fishery (NEFSC 2009). Indeed, the US ocean quahog
stock was considered to be at carrying capacity in the
late 1960s at the historic start of the ocean quahog
fishery (NEFSC 2009) and remains near that today
(NEFSC 2017). An asymptote in the age frequency af-
ter population expansion at each of the 4 sites is con-
sistent with this interpretation. (3) The vast majority of
animals of age 80 yr or higher were fully recruited to
the fishery prior to its inception; thus, any fishing
would have decremented this group of animals equiv-
alently. These animals are the primary contributors to
the age frequencies reported herein, as ageing was
restricted to animals ≥80 mm. Thus, we have not at-
tempted to correct the age frequencies for bias in a
possible over-representation of the youngest clams
that grew into market size since the fishery became
operational. It is unlikely that the fishery has substan-
tively impacted the age frequencies, nor is it likely
that the length frequencies have been truncated.
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CONCLUSIONS

As described in Pace et al. (2017), the Georges Bank
age−frequency distribution shares many similarities
with the published age−frequency distributions for
Iceland (Steingrímsson & Thórarinsdóttir 1995) and
the Belfast Lough in Northern Ireland (Ridgway et al.
2012). The age−frequency distributions for New Jer-
sey, Long Island, and Southern New England also
bear many similarities to that of Georges Bank in that
population levels remained low for a period of about
100 yr beginning about 200−250 years ago, after
which the population size grew rapidly over a few
decades at all sites except New Jersey, whereafter the
population increased in size more slowly (Steingríms-
son & Thórarinsdóttir 1995, Ridgway et al. 2012, Pace
et al. 2017). Similarities be tween locations as distant
as the New Jersey continental shelf and Ireland sug-
gest that this mode of colonization and population
 expansion may be characteristic of ocean quahogs
throughout the North Atlantic basin.

The age−frequency distributions suggest that the
living populations of ocean quahogs record the entire
history of colonization over a substantial portion of
their present North Atlantic range. Setting aside re-
cent non-native invasions (e.g. Crassostrea gigas,
Troost 2010; Potamocorbula amurensis, Carlton et al.
1990), this species may be the only marine species for
which such a record exists and very likely the only na-
tive species. The characteristics of this colonization
and possible biological explanations are as follows. (1)
Initial colonization that gave rise to the current popu-
lations began towards the end or shortly after the end
of the Little Ice Age. Abundances were low as might
be anticipated by dependency on an external source
for recruitment. Low mortality rates and long life span
permits representatives of these initial colonizers to
remain present in the living population. Year classes,
albeit small, were possibly more common than later,
suggesting more sporadic recruitment events from an
external source. Small sample sizes, however, limit
confidence in this inference. (2) At some point, local
reproduction began to contribute to the larval pool;
likely this occurred many years following initial colo-
nization due to the extended time to maturity. Alter-
natively, environmental conditions changed, permit-
ting enhanced recruitment and/or post-settlement
survival. (3) Due to local reproduction or to environ-
mental change, the population entered into a rapid
expansion that, over a relatively brief period given the
life history of the species, raised abundance to near
carrying capacity. The population expansion is re-
markably rapid given the extended life span of the

species; however, the rapid expansion is consistent
with the high recruitment potential of most bivalves
due to their high annual fecundity. (4) Population ex-
pansion ceased when the population reached carrying
capacity. Afterwards, recruitment remained sufficient
to balance natural mortality and the population re-
mained at carrying capacity for an extended period of
time, rarely interrupted by extended periods of low
recruitment. This suggests that ocean quahogs have
recruited regularly, certainly more frequently than
once per decade, to these populations.

Resiliency of the US East Coast ocean quahog pop-
ulation to fishing has been questioned due to the lim-
ited evidence for large recent recruitment events.
The population dynamics inferred from the age fre-
quencies described here are consistent with recent
inference from stock surveys (NEFSC 2017) that A.
islandica is near carrying capacity throughout its US
range. Low recruitment is the anticipated result for a
population near carrying capacity, whereas a much
higher recruitment capacity typical of most bivalve
species is well demonstrated by the rapid population
expansion that occurred during earlier times as the
population abundances rose to that level. Expansion
of the range northward and offshore, however, which
might be anticipated with continued warming of the
North Atlantic, may require an extended period of
time, as time-to-maturity will likely limit the res -
ponse time of a newly established population in
developing local recruitment potential.
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