

The East of Nantucket Survey

Update DRAFT-DO NOT DISTRIBUTE

Note: NMFS survey grid $2 \mathrm{~nm} \times 2.5 \mathrm{~nm}$

Survey protocol

- 5-minute tow
- 99 in dredge
- Shaker closed to about 0.75 in
- Tow speed ~3 knots
- Tow coverage: $\sim 1300 \mathrm{~m}^{2}$ per tow, $\sim 82,000 \mathrm{~m}^{2}$ total
- All catch sorted
- Delaware II sorting protocol followed as closely as possible
- Deviation: bushel volume measurements used rather than counts for mussels
- Ten haphazardly chosen rocks, cobbles, boulders, shells photographed. Photos biased towards particle side with bionts, if present

Distribution of surfclams

Note:

- Surfclams found throughout the region except the offshore and southern portions of the HMA
- Largest numbers found in the north central portion of the HMA

Nantucket Survey: surfclams surfclams-all

Differential distribution:

submarket ($0-120 \mathrm{~mm}$) versus small market (120-150 mm) surfclams

Note:

- Surfclams $<120 \mathrm{~mm}$ and surfclams $120-150 \mathrm{~mm}$ are distributed almost identically
- Few small surfclams are found inshore
- Nearly all submarket and small market size clams are in the northcentral portion of the proposed HMA

Nantucket Survey: surfclams $\mathbf{1 2 0} \mathbf{- 1 5 0 ~ m m ~ o v e r ~ 0 - 1 2 0 ~ m m ~}$

Differential distribution: large surfclams

Note:

- Surfclams >170 mm and surfclams 150170 mm are distributed almost identically
- Few large surfclams are found offshore
- Nearly all market size surfclams are east of or in the eastern portion of the proposed HMA
- Clams 150-170 mm are biased south of the largest clams
- This is the largest concentration of very large (>170 mm) clams in the federal stock!

Nantucket survey: surfclams >170 mm over 150-170 mm

Differential distribution: surfclam shell versus large surfclams

Note:

- Large surfclams and shell overlap relatively consistently
- Surfclam shell is taphonomically robust thus, presence of shell is indicative of longterm habitation

Nantucket Survey: surfclam shell over 150-170 mm surfclams

Differential distribution:

Note:

- Small surfclams and shell overlap relatively poorly
- Surfclam shell is taphonomically robust - $41^{\circ} 10^{\prime}$ thus, absence of shell is indicative of recent habitation

Nantucket Survey: surfclam shell over 120-150 mm surfclams

Correspondence Analysis Where are the small clams?

Some Spearman Correlations

	surf120	surf150	surf170	surf200	mussel
surf150	0.8885				
	$<.0001$				
surf170	0.64588	0.70878			
	$<.0001$	$<.0001$			
surf200	.33233	.33361	0.77439		
	0.0078	0.0075	$<.0001$		
mussel	0.39842	0.42388	0.14486	-0.05249	
	0.0012	0.0005	0.2573	0.6829	
cobble	0.34843	0.38544	0.12712	-01813	0.64893
	0.0051	0.0018	0.3208	0.8823	$<.0001$

Some Pearson Correlations

surf120 surf150 surf170 surf200 mussel

surf150	0.93434 $<.0001$					
surf170	0.14817	0.20538				
	0.2465	0.1064				
surf200	-0.00954	-0.00950	0.80197			
	0.9408	0.9411	$<.0001$			
				0.09322	-0.04127	
mussel	0.03205	0.04502	0.061	0.4674	0.7481	
	0.8031	0.7261				
cobble	0.31664	0.53001	0.13226	0.00366	0.11769	
	0.0115	$<.0001$	0.3014	0.9773	0.3583	

Note: significance with cobbles ceases if zero stations are removed

Basic Relationships

- Correspondence analysis and correlation analysis confirm that sites with abundant large surfclams are found in locations where small surfclams are less abundant.
- Mussels, cobbles, and abundant small surfclams are found at similar depths and deeper than sites where large surfclams are abundant.
- The differential between Pearson and Spearman results show the influence of sites with few mussels or surfclams in determining associations within the correspondence analysis.
- The Pearson results confirm the inference from correspondence analysis that mussels and abundant small surfclams have limited overlap spatially.
- The Pearson results confirm the inference from correspondence analysis that mussels and cobbles have limited overlap spatially.

Differential distribution:

Note:

- Cobbles are 2-6 inches across
- Cobbles are common in the west central portion of the HMA and southeast of Nantucket
- Large surfclams and cobbles overlap relatively poorly

Nantucket Survey: 170-200 mm surfclams over cobbles

Note:

- Cobbles are 2-6 inches across
- Cobbles are common in the west central portion of the HMA and southeast of Nantucket
- Small surfclams $41^{\circ} 20^{\prime}$ and cobbles overlap considerably in the north central portion of the HMA
- However, at a smaller scale, small surfclams are generally more abundant in areas with fewer cobbles
- Surfclams are moving into increasingly cobble-rich habitat

Nantucket Survey: all surfclams over cobbles

Differential distribution: rocks versus all (mostly small) surfclams

Note:

- Rocks are 612 inches across
- Rocks are frequently encountered in the north and central portion of the HMA and southeast of Nantucket
- Surfclams and rocks do not overlap consistently
- However, rocks do not limit surfclam colonization potential

Nantucket Survey: all surfclams over rocks

Differential distribution: large surfclams versus mussels

Note:

- Mussels were Mytilus cf. edulis and Modiolus modiolus
- Both species often co-occurred in the same bed; both species were characterized by a dispersed sizefrequency including new recruits and adults
- Mussels were rarely encountered in large numbers; $41^{\circ} 10^{\prime}$ stations yielding large catches were encountered in the northern panhandle and south central portions of the HMA
- Large surfclams and mussels rarely occurred commonly at the same station

Nantucket Survey: surfclams 150-180 mm over mussels

Note:

- Mussels were Mytilus cf. edulis and Modiolus modiolus
- Both species often co-occurred; both were characterized by a size-frequency including new recruits and adults
- Mussels were rarely encountered in large numbers; stations yielding $41^{\circ} 10^{\prime}$ large catches were in the northern panhandle and south central portion of the HMA
- Small surfclams and mussels rarely occurred commonly at the same station

Nantucket Survey: surfclams $\mathbf{1 2 0} \mathbf{- 1 5 0} \mathbf{~ m m}$ over mussels

Differential distribution: cobbles versus mussels

Note:

- Mussels were Mytilus cf. edulis and Modiolus modiolus
- Both species often co-occurred in the same bed
- Cobbles were 2-6 inches
- Mussels were rarely encountered in large numbers; stations yielding large catches were in the northern panhandle and south central portion of the HMA
- Cobbles and mussels sometimes occurred commonly at the same station, but cobbles were not required to support mussel habitation

Nantucket Survey: mussels over cobbles

Why are mid-depth surfclams small?

Possibilities

- Growth rates may be lower in deeper water
- The surfclams may be younger

Evidence for Differential Growth Rates and Age Distributions

Methods:

- Four sites were sampled and selected individuals across the size spectrum aged
- Two sites were shallow and characterized by large surfclams
- Two sites were deeper and characterized by smaller surfclams
- Ages were intercalibrated between USM, VIMS, and NEFSC
- Growth increments were compared between ages 1 and 2,3 and 4 , and 7 and 8.
- Based on previous statistical analyses and correspondence analysis, a nested ANOVA was run with location nested within group (group = shallow or deep)
- Based on Pace et al. (2017) evidence from ocean quahogs and Munroe et al. (2016) evidence for surfclams, birth date was included as a covariate.
- All data met assumptions of normality and heteroscedasticity.

Number of Surfclams
at Age
$0 N+\sigma$ -

Surfclam age distributions

$$
■ \mathrm{~A} 3 \square \mathrm{C} 3 \square_{\mathrm{I} 1} \square_{\mathrm{I} 4}
$$

456678101112131415161718192021222324 Age of Surfclam (years)

- Clams exceeding 13 yr of age were found only at the shallow water sites.
- Populations with clams 20+ yr of age are characteristic of mature populations with a long history of recruitment; indeed these populations also had high quantities of surfclam shell.

Why are mid-depth surfclams small?

Possibilities

- The surfclams may be younger
$>$ No old surfclams were collected at mid-depth sites.
$>$ This is consistent with the limited amount of surfclam shell also collected at these sites
> Analysis of clam ages suggests a relatively recent colonization event (post-2000: the oldest animal aged recruited in 2004)

Growth Rate Statistics

Results: Growth increment 1 to 2 years Group: P > 0.05
Locale(group): P>0.05
Birth date: $\mathrm{P}>0.05$
Birth date-group interaction: $P>0.05$
Lease squares means test on Locale: no significant differences

Conclusion: Early growth rates do not vary between locales or over depths

Growth Rate Statistics

Results: Growth increment 3 to 4 years
Group: $\mathrm{P}=0.03$
Locale(group): P>0.05
Birth date: $P=0.0026$
Birth date-group interaction: $P=0.03$
Lease squares means test on Locale: Shallow sites routinely had significantly higher growth rates.

Conclusion: Birth date has a strong influence on growth rate. Clams at shallow sites grew faster in the first years after colonization in deeper water (note that these clams reached 3 years of age many years later in many cases)

Growth Rate Statistics

Results: Growth increment 7 to 8 years
Group: P > 0.05
Locale(group): P > 0.05
Birth date: $\mathrm{P}>0.05$
Birth date-group interaction: $\mathrm{P}>0.05$
Lease squares means test on Locale: Growth rates were highly significantly faster at one deep site in comparison to either shallow site ($P<0.007$)

Conclusion: Adult growth rates do not vary uniformally between locales or over depths, but clams at one deeper site grew faster (note that these clams reached 7 years of age many years later)

But: very few deeper water clams were this old, so conclusions are based on a small sample size

Growth rates between age 3 and 4 by birth year

Offshore

- Note that offshore growth rates were low for the early colonizers; recent colonizers are growing at about the same rate as inshore clams have grown over the last 2 decades.
- Note that the birth year effect only offshore explains the significant interaction term in ANOVA and also the lower growth early also explains the significant locale main effect.

Why are mid-depth surfclams small?

Possibilities

- Growth rates may be lower in deeper water
$>$ No evidence is present that slower growth explains the size disparity
> Birth date is the primary variable influencing growth rate and is only important for deeper water clams
> Shallow water clams have been growing at about the same rate since the mid-1990s
> Deeper water clams initially grew slower, but have caught up and now have growth rates similar to shallow water clams.
> Growth rates of early colonizers are responsible for main effect (locale) differences in the ANOVA

The Circa-2000 Regime Shift (Atlantic Multidecadal Oscillation)
What did warmer temperatures do?

1. Growth dynamics in Delaware Bay oysters profoundly changed (Powell et al. 2009)
2. Population dynamics in Gulf of Mexico oysters profoundly changed: influence of ENSO ceased (Powell, 2016)
3. EEZ surfclams died off Delmarva (Kim and Powell, 2004 and others)
4. New Jersey state water fishery collapsed
5. Surfclams moved offshore significantly (Timbs et al., submitted)
6. Surfclams colonized deeper depths east of Nantucket

Expectations

- Surfclams will expand in deeper water east of Nantucket; fishable stocks should be present if not now then within 5 years.
- Where will the mussels go? Mytilus northward movement is well documented. Region is likely already too warm for Modiolus (we did not catch one large Modiolus)
- Coincident occupation of surfclams and mussels at mid-depth is likely transient; are these transient multiple stable points?

