Evidence of Multidecadal Recruitment in the Ocean Quahog, *Arctica islandica* in the Western Atlantic Ocean

Sara Pace¹, Eric Powell¹, and Roger Mann²

¹Gulf Coast Research Laboratory
²Virginia Institute of Marine Science
Ocean quahogs (*Arctica islandica*)

- Distribution along both coasts of the North Atlantic basin.
- Tolerates bottom temperatures up to 16° C.
- Shell length up to ~ 130 mm.
- Current estimates age oldest specimen at 507 years (Butler et al. 2013).
Recruitment

• Literature suggests recruitment events are regional and infrequent, occurring once or twice every 20-40 years (Powell & Mann 2005).

• While recruitment appears to be rare in the context of the fishery, as these animals commonly exceed 200 years in age, recruitment is frequent considering their longevity.

• Do not recruit to fishery for 1-3 decades after settlement.

• Any increase in stock productivity anticipated from fishing down the stock would likely be delayed due to time lag between settlement and recruitment to fishery.
Ocean Quahog Fishery

- Commercially important species since fishery began in late 1960’s.
- Recent annual landings range from ~14,000-16,000 mt (meat).
- Fishing limits set using information about biological reference points (BRPs).
- Limited information available about OQ stock metrics makes setting BRPs uncertain.
- Updating BRPs is dependent upon the development of a long-term recruitment index.
Objectives

Consensus is that no progress on BRPs can be made without information on long-term recruitment dynamics.

• To utilize imaging software to provide individual ages from analysis of yearly growth bands of selected individuals.

• To develop population age-frequencies for ocean quahogs.

• To use these age frequencies to develop a recruitment time series supporting reference point recommendations for ocean quahogs.
Sample Collection Locations

- New Jersey
- Long Island
- Southern New England
- Georges Bank
Clams are collected with a commercial clam dredge.

2 collections per site
1. First ~400 clams measured and retained.
2. Every clam is measured but only clams within largest 20th percentile retained.
Sampling Methods

• Full size distribution from each site is split up into 5 mm intervals from 80-120 mm (80 mm fully selected to fishery).

• ~20 clams sampled from each size interval at all sites.

• An additional 20 individuals from one 5 mm size bin at each site have been sampled.
• Clams are sectioned along the height axis on a commercial tile saw.

• Clams are ground on increasingly fine sand paper grits and polished using diamond suspension on a wet polishing wheel.
Annual Growth Band Analysis
GB age frequency

SNE age frequency
Conclusions

• All 4 sites have old, rarely occurring individuals present in the tail end of the population age-frequency.

• Oldest animal at each site:
 - NJ: 220 y
 - LI: 248 y
 - GB: 198 y
 - SNE: 172 y

• All 4 sites experience a ramp up of recruitment:
 - NJ: 1855 (~160 y)
 - LI: 1905 (~110 y)
 - GB: 1890 (~125 y)
 - SNE: 1900 (~115 y)

• Hypothesis: increase in recruitment co-occurs with ending of the Little Ice Age as the water warmed up.
Conclusions

• The populations at all 4 sites come to an asymptote, indicating that population is at carrying capacity.

• Large year classes not common, recruitment seems to be consistent over a long period of time.

• Decrease in young individuals at all 4 sites is due to truncation of data set (only clams > 80 mm aged), not due to a reduction in recruitment.
Acknowledgements

• ICES Early career scientist travel award
• Captain and crew of the F/V Christy and F/V Pursuit
• Advisors: Eric Powell, Roger Mann
• Chase Long