

Developing process and procedures for the refinement of surf clam and ocean quahog shells into calcium carbonate (CaCO₃): Phases II

Yanhong (Ellen) He Younas Dadmohammadi Alireza Abbaspourrad

March 2022

Recap

In phase I of the project, we developed a process for cleaning, washing, and grinding the two shell species, including surf clam shells (SCS) and quahog shells (QS) and we also established a platform to perform a full analysis of the products.

Surf clam shells (SCF)

Ocean Quahog shells (QS)

Processing

Characterization:

- Morphology
- Element (EDX)
- Structure (ATR-FTIR)
- Thermal property (TGA)
- Digestibility

Phase II: Proposed plan

- Increase the scale of our process to produce enough samples for feed/paper industries;
- Reach out to the feed and paper industries for understanding their requirement for the CaCO₃ and modify the product to meet those requirements;
- Find parties for washing, grinding, and oven heating of the shells for kilogram scale production;
- Perform a full analysis of the product required for the selected industry;
- Conduct a detailed and more realistic economic study for the large-scale production of the powdered CaCO₃.

**

Scaled-up production of CaCO₃

Harrop Industries, Inc.

3470 E. Fifth Avenue Columbus, Ohio 43219-3816

The party we worked with is **Harrop Industries, Inc**.

\Box Raw shell samples (6 x 5 kg) sent to Harrop.

Salvatore Lamonica

Sea Watch

Atlantic Cape Fisheries

Lamonica Fine Food

Processed CaCO₃ samples received from Harrop

Physicochemical

Characterization:

- Color
- CaCO₃ content (TGA)
- Structural characterization (FTIR)
- In vitro solubility
- Loose bulk density
- pH

Thermal characterization of the CaCO₃ samples (TGA)

Marine Fisherie

- The CaCO₃ contents of samples are higher than 97%, which is comparable to the commercial calcium carbonate (96.5%, HUBERCARB® Q series)
- Particle size of samples did not affect the content of CaCO₃.

Sample	Weight loss				
	Organic matter				
	Moisture (%) 20-125 °C	(%) 125-600 °C	CO ₂ (%) 600-900 °C	Total weight loss (%) 20-900 °C	
+60	0.02	0.73	42.70	43.44	97.11
+20	0.04	0.46	43.23	43.74	98.31
					6

Elemental analysis using ICP-MS of Harrop CaCO₃ samples

S	Sample		
r	name		
	• •		Animal feed ¹
Elements	+20	-325	(NRC)
DM%			
Ca	37.38	36.86	35.8-38.5
Р	0.01	0.03	0.01-0.02
Na	0.49	0.48	0.06-0.08
Cl	n/a	n/a	0.02
Κ	0.00	0.01	0.08-0.11
Mg	0.02	0.03	1.61-2.06
S	0.12	0.14	0.04-0.08
Fe	0.01	0.11	0.06-0.35
Cu	0.00	0.01	
Mn	0.00	0.01	0.02
μg/g			
Pb	0.22	n/a	< 0.5
As	0.23	1.44	< 3
Hg	nd	nd	< 0.5
Zn	nd	n/a	
Se	nd	nd	
Cd	nd	nd	

- Calcium contents of coarse and fine CaCO₃ samples meet the requirement (35-38.5%).
- ICP-MS analysis was conducted at Virginia Tech (VA).

1. https://www.pig333.com/articles/calcium-carbonate-as-a-pig-feed-ingredient_17514/

7

SCEENFE Brine Fisheries	Proposed put: two seashells SCS QS	d 3 scenarios for th from she Out	e CaCO ₃ lls put: 3 CaC SQ1 SQ2 SQ3	production O ₃ products
Product	CaCO3 (%, w/w)	Particle size	Color	Target customer
SQ1	≥98%	Pass through mesh 325	White	Pharmaceutical and food sectors
SQ2	\geq 98%	Pass through mesh 200	Off-white	Paper

Pass through mesh 325

SQ3

 $\geq 96\%$

8

Agriculture and

construction

Off-white

Process diagram of SQ1

Process diagram of SQ2

SQ1, SQ2, and SQ3 samples received from Harrop

• **SQ1** • Highest quality; Particle size $\leq 44 \ \mu m$

Harrop Industries, Inc.

3470 E. Fifth Avenue Columbus, Ohio 43219-3816

• SQ3

- o Lowest quality; Particle size $\leq 44 \ \mu m$
- o Uncalcined

Techno-economic analysis (TEA) for CaCO₃ production from SCF and QS

- Why TEA? It is a method that can be used to evaluate the economic performance of a proposed process to produce new products.
- Answer the key question: Is the CaCO₃ production from SCF and QS economically feasible?

• Process simulation and economic analysis using professional software.

11

Designed survey for collecting information of plant location and capacity

Ocean Quahog shell and Surf clam shell production survey

This survey is initiated by Cornell University, and it aims to collect information for studying the management of waste Ocean Quahog and Surf clam shells in the U.S. Any risks from completing this survey are not anticipated. Questions or additional information, please contact Dr. Alireza Abbaspourrad: alireza@cornell.edu. We appreciate it if you can respond to the survey by **February 28, 2022**.

Note: Data should be from the 2021 production year.

- 1. Where is your clam processing plant located (state and city)?
- 2. Which percentage of each species do you process? Please specify the % of

Surf clam and % of Ocean Quahog.

- 3. What is the annual production of waste shells in your plant?
- 4. When is the peak period for the production of waste shells (please indicate by month, e.g. May through November)?
- 5. What is the estimated percentage of waste shell generation that occurs during your peak period?
- 6. What is the monthly production of waste shells during the peak period?
- 7. How do you manage the waste shells currently?
- 8. Your contact information (name, email, and phone number)?

The survey can be accessed here: https://forms.gle/cLFshev6AUsLsfLz6

Plant location & capacity (2 survey responses)

1) Delaware

- Capacity
 - 4.5 million pounds/ month 0 Apr to Sep (6 months) o 60% OQ, 40% SC

2) MA (Massachusetts)

- Capacity
 - 4-9 million pounds/ month Ο
 - 12 months \bigcirc
 - 82% OQ, 18% SC 0

P-31/SC-101

Belt Conveying

Process simulation in SuperPro Designer with a daily capacity of 68 MT shells and 56.5 MT SQ1

CaCO3 98.67 % db

Solids Storage

Micronization

15

Fixed capital cost (2022 prices in USD) for SQ1 production

Total plant direct cost (TPDC, \$7,580,000)

Equipment purchase __cost, 2,832,000, ____37%

The total plant direct cost is
estimated to be 7.58 million
USD, of which, the equipment
cost 2.83 million USD,
accounting for the largest portion
(37%) of the total plant direct
cost.

- ✤ Total plant indirect cost (TPIC, \$4,548,000)
- Contractor's fee & contingency (CFC, \$1,819,000)
- ✤ Fixed capital cost (FCT)= TPDC + TPIC+CFC= \$13,974,000

SCENFIS Science Center for Marine Fisheries

Economic evaluation summary of SQ1 production

*MP: main product; IRR: internal rate of return; NPV: net present value.

	\$100/MT seashell	\$20/MT seashell
Total Capital Investment	15,367,000\$	15,203,000\$
Capital investment charged to this project	15,367,000\$	15,203,000\$
Operating cost	11,356,000\$/yr	9,542,000\$/yr
Revenues	18,838,000\$/yr	18,838,000\$/yr
Cost basis annual rate	18,837,697 kg MP/yr	18,837,697 kg MP/yr
Unit production cost	0.6 \$/kg MP	0.51 \$/kg MP
Net unit production cost	0.6 \$/kg MP	0.51 \$/kg MP
Unit production revenue	1.00 \$/kg MP	1.00 \$/kg MP
Gross margin	39.71%	49.35%
Return on investment	45.14%	54.57%
Payback time	2.22 years	1.83 years
IRR (after taxes)	29.54%	35.28%
NPV (at 7.0% Interest)	31,719,000 \$	41,503,000 \$

By setting a SQ1 selling price of \$1/kg, the project seems very profitable with a payback time of just 2.33 years. The payback time could be further shorted when the cost of raw seashells decreases.

Note: the economic evaluation is assumed that the cost of raw shell is **\$20/MT** and daily capacity is 68 MT raw seashell.

	SQ1	SQ2	SQ3
Total Capital Investment	15,203,000\$	11,824,000\$	5,853,000\$
Operating cost	9,542,000\$/yr	7,209,000\$/yr	5,049,000\$/yr
Revenues	18,838,000\$/yr	9,735,000\$/yr	6,940,000\$/yr
Unit production cost	0.51 \$/kg MP	0.37 \$/kg MP	0.25 \$/kg MP
Unit production revenue	1.00 \$/kg MP	0.50 \$/kg MP	0.35 \$/kg MP
Gross margin	49.35%	25.94%	27.24%
Return on investment	54.57%	24.75%	32.76%
Payback time	1.83 years	4.04 years	3.05 years
IRR (after taxes)	35.28%	15.50%	20.39%
NPV (at 7.0% Interest)	41,503,000 \$	7,684,000 \$	6,747,000 \$

*MP: main product; IRR: internal rate of return; NPV: net present value.

Summary

- Lab-scale process for high quality CaCO₃ was successfully developed, and the process is scalable.
- Environmentally friendly processes for producing three grades CaCO₃ products (SQ1, SQ2, SQ3) for different applications were designed. The quality of SQ series produced in scaled-up process was evaluated.
- It is profitable to produce SQ series products from ocean quahog and surf clam shells based on the techno-economic analysis, especially when the cost of raw shells is low.
- Three market reports were obtained and are conforming the growing demand for sustainable CaCO₃.
- 100 gr of each sample is ready to be shipped.

College of Agriculture and Life Sciences

Thank You!

Abbaspourrad Lab Email: alireza@cornell.edu

March 2022

