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Summary 

 

Discards from commercial fisheries have been linked to detrimental effects on ecosystems and 

economies worldwide. Understanding spatial and temporal patterns of discards may assist in 

devising regulatory practices and mitigation strategies toward more sustainable fisheries 

practices. In this study, we investigate data from bycatch at sea on-board monitoring programs 

using a machine learning approach. Machine learning has been successful in revealing trends and 

patterns in various ecological applications, potentially providing a way forward as an alternative 

and complementary methodological approach in fisheries. We used a gradient boosting classifier 

for describing catch and bycatch patterns in the US Mid-Atlantic black seabass (Centropristis 

striata), summer flounder (Paralichthys dentatus), scup (Stenotomus chrysops), and shortfin 

squid (Illex illecebrosus) fishery. We found strong positive associations between the classifier 

and target species for catch datasets. For bycatch datasets, we found co-occurring species strong 

negative and positive associations, as well as associations with temperature and year of sample. 

From this study, we conclude that machine learning approaches to be promising in 

supplementing traditional methodologies, especially with the increase in data availability trends. 

 

Rationale 

 

A continued challenge in the management of the mid-Atlantic scup fishery is to reduce bycatch, 

well known in its contribution to the declines in stocks of ecologically and economically 

important species (Roberson and Wilcox 2022). Reducing bycatch, however, is not accomplished 

by the top-down imposition of regulatory measures aimed at reducing catches of unwanted 

species. Bycatch management need to be shaped after a holistic approach involving all 

stakeholders in a fishery, including government, academia, and industry at the least. 

Additionally, to effectively develop a strategy for bycatch reduction, new tools, based on state of 

the art analytical techniques, may also be of critical importance. Such tools, when adopted by 

managers, may offer more transparent outcomes and accepted measures for conservation of 

fisheries resources through reduction in bycatch. 

 

Marine resource conservation and management has been one of the objectives of many 

government organizations in the United States. The Mid-Atlantic Fisheries Management Council 

is one of the eight councils established by the Magnuson-Stevens Fisheries Conservation and 

Mangement Act of 1979 that has strived to provide management advice toward sustainable 

fisheries in U.S. federal waters. Specific management plans are currently devised for 15 species, 

of which summer flounder, scup, black seabass, and shortfin squid are among the most 

important. One of the key factors affecting management plans is the incidence of unwanted 

bycatch in the fisheries targeting those four species. Data from at-sea monitoring programs are 

used to produce independent information sources in reference to bycatch temporal and spatial 

patterns by sector, harvesting gear, and stock area. Fisheries bycatch information, in turn, are 

used in supporting in-season management practices, ecosystem studies, and stock assessment 

activities. 
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Because bycatch mortality in most U.S. monitored fisheries is high (Bellido et al. 2011; Viana et 

al. 2021; Graham et al. 2022), reducing the incidence of untarget species is a management 

priority. The U.S. National Oceanographic and Atmospheric Administration has developed a 

National Bycatch Reduction Strategy with foreign and domestic partners, which includes 

devising harvesting gear modifications, establishment of harvest time-of-year closures, and 

determining area restrictions to reduce unwanted catch. Additionally, technology-based 

monitoring devices are research priorities to produce more accurate and larger volumes of 

bycatch data (Ditria et al. 2020; Khokher et al. 2021). With existing and forthcoming bycatch 

datasets, analytical methodologies based on machine learning (LeCun et al. 2015; Mohri et al. 

2018) and suitable for big data (Mayer-Schönberger and Cukier 2014) may increasingly become 

center-stage in analyses supporting fishery management strategy development. 

 

Objectives 

 

We investigated the promise and limitatons of machine learning (ML) for analyzing temporal 

and spatial patterns in catches of incidentally caught living marine resources in a suite of mid-

Atlantic fisheries. Our specific objectives are to  

 

(1) provide a description of temporal and spatial patterns of bycatch in the scup, black sea 

bass, squid, and summer flounder fisheries, and  

(2) use ML techniques to understand how gear, temporal, spatial, and environmental 

characteristics can be used to describe contrasts in bycatch magnitude and diversity. 

 

Methods 

 

In this work we used data between 1994 and 2020 obtained from the Northeast Fisheries Science 

Center Observer and At Sea Monitoring Program (OSMP). The OSMP collects catch data from 

commercial fishing vessel trips, providing independent data sources on catch biological 

characteristics for finfish and invertebrate marine species, such as bycatch composition and 

species-specific fishing mortalities. Data from OSMP are quality controlled and anonymized 

prior to storing for public use. Data anonymization is done to obscure information that can be 

traced back to vessel and individual fishers. Anonymization is done by reporting information at 

the levels of vessel trips, instead of tows, at quarter frequencies, and at a spatial resolution of 

quarter-degree-days. Anonymized OSMP data has been collected since May 1994, covering an 

area between latitudes 33.87o and 43.05o N, including coastal habitats to longitude 61.04o W 

(Fig. 1). 

 

Stored OSMP data fields include two keys for linking data tables, a program identifier, year and 

month landed, a trip identifier, haul number within a trip, statistical area code, inshore area code, 

gear code, a code for indicating weather the haul was observed for bycatch, latitude and 

longitude for where haul began, a species code, actual or estimated weight for each species, catch 

disposition, an indicator whether the species was dressed or round, the weight type recorded 
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(actual or dressed), a comment field, and a field indicating the method for estimating catch 

weight (Table 1). 

 

To standardize data, several columns and rows of the original dataset were omitted as a 

preprocessing step. Omitted data columns, reflecting metrics collected during fishing trips, were 

control columns, such as row identifiers, columns with little contrast, and columns with high 

column-to-column correlations (see below for details; Table 1). Omitted data rows included 

observations of frequencies lower than 0.5 percent and early observations where data collection 

protocols were different from current observation and recording methods. Additionally, a field of 

sea-surface temperature was included in the study dataset. 

 

Model Development 

 

The gradient boosting ensemble machine learning algorithm, a decision tree-based supervised 

method, was used as a classifier of bycatch weight as a function of predictors (see below). 

Gradient boosting was used due to its high performance compared to other ML and deep learning 

models (Shwartz-Ziv and Armon 2021) and its ability to capture complex non-linear 

dependencies at a low computational cost, especially for data with a low signal to noise ratio 

(Friedman 2001), as is common in fisheries-related datasets. Gradient boosting was also used for 

allowing transparency and interpretability of results, offered to some extent by tree-based models 

(Arrieta et al. 2020). 

 

To train the models in this study, 70 percent of data rows were used as the training set and the 

remainder for model testing. The best number of boosting trees and their depths were determined 

using cross-validation. The Adaboost loss function was used for the model optimizer, decision 

tree stumps were the base learner, and subsampling was the regularization method. Model 

performance evaluation metrics were classification accuracy, recall, precision, and F-1 scores 

(Natekin and Knoll 2013). Because an ensemble of trees was used as the underlying algorithm 

for the model, interpretability of results is obscured compared to other white-box machine 

learning approaches (Du et al. 2019). To remedy for lack of transparency, LIME (Ribeiro et al. 

2016), whereby predictor directionality with model classes are estimated, and relative predictor 

influence determination were used to assist in result interpretability. 

 

 

Analysis for Bycatch Patterns 

 

Data Engineering 

 

Due to the high number of columns in the dataset obtained from OSMP, columns, also known as 

features, were engineered. Feature engineering was conducted to circumvent the curse of 

dimensionality (Alsaffar and Omar 2014), reduce data processing cost, and obtain better model 

learning performance (Liu et al. 2015; Li et al. 2017). Engineering consisted of feature selection 

and row filtering, as in the preprocessing phase above, feature modification, and feature 

augmentation using external data sources. 
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Features were selected based on domain knowledge and statistical-based methods (Li et al. 

2017). Domain knowledge was obtained from counseling with data originator personnel and 

literature searches. Statistical-based methods were based on assessment of correlations among 

features and between a particular feature and the model response variable, also known as the 

class label (see below). Feature-to-feature correlations higher than 0.9 were processed by droping 

the one of the features. As a further processing, all categorical features were one-hot encoded to 

enable model runs (Yang et al. 2019). 

 

The label for the boosting classifier was derived from the weight of catches. Catch weights for 

the OSMP data are recorded for each species on a per-haul basis. Catch weights were further 

transformed for this study by grouping species according to categories (Appendix I). Category 

weights were then logarithm transformed and dichotomized by assigning a class according to 

whether a value was below or above the median for that species category over the entire dataset, 

regardless of sampling location or time. The resulting dataset consisted of the dichotomized 

bycatch abundance indicator, the model class, and the features preprocessed and engineered as 

above. 

 

Data Partitioning 

 

Data from at-sea observer programs, such as OSMP, support stock assessment efforts and 

fisheries management plans to, among other things, reduce bycatch. Of commercially important 

target species, sea bass (Centropristis striata), summer flounder (Paralichthys dentatus), scup 

(Stenotomus chrysops), and short-fin squid (Illex illecebrosus) are the most significant. The 

fishery for these species is conducted using bottom otter trawls of various configurations 

(Shepherd and Terceiro 1994; Link et al. 2011). The discards for fishing trips targeting these 

species are recorded by observers for each species brought on board after a net haul. Species 

brought on board are subsequently either kept for commercialization or discarded overboard. 

 

After processing the data, the dataset for this study was partitioned to construct the final datasets 

for analyses. The four species and two bycatch dispositions above were the basis for data 

partitioning, resulting in eight datasets (Table 2) analyzed independently using the modeling 

approach above. 

 

Analysis for Bycatch Species Richness 

 

Feature engineering for the boosting classifier was conducted as described above for the analysis 

of bycatch patterns, except for data filtering. Because species richness was the target response 

variable, all species, independent of frequency, were included in generating the final analysis 

dataset. To provide a spatial and temporal estimate of species richness, richness was calculated 

based on haul observations over quarter-degree square and year quarter groupings (Table 1), 

resulting in a smaller dataset than the original (Table 2).The label for dichotomization used in the 

boosting classifier for richness was based on the actual species, rather than species categories. 

Dichotomization was based on the median species richness taking into account the overall final 

dataset for species richness. 
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Results 

 

General Findings 

 

Fisheries targeting summer flounder had the largest catches and discards, followed by fisheries 

for sea bass, squid, and spot. Flounder fisheries had discards totalling 5,570.34 MT and retained 

catches 5,735.53 MT over the analysis period. The sea bass fishery kept 1081.84 MT and 

discarded 1323.59 MT. Fisheries for shortfin squid kept 169.91 MT and discarded 12.69 MT. 

Finally, for the spot fishery, 1.25 MT were discarded and 1.31 MT kept. For all four fisheries, 

the weight or the target species kept exceeded the weight for all other non-target species 

harvested. Discards, however, followed a distinct species-specific pattern. For the summer 

flounder and sea bass fishery, spiny dogfish (Squalus acanthias) comprised the majority of 

discards. For the spot and squid fishery, striped bass (Morone saxatilis) and scup were dominant 

(Table 3). Species richness was the highest at fishing grounds Hudson Canyon, followed by the 

area off No-Mans-Land, Long Island, and Wilmington Canyon (Figure 1), which in combination 

accounted for over half of species richness. The most abundant species either discarded or kept 

was summer flounder, followed by shortfin squid, scup, and butterfish (Peprilus triacanthus). 

Species richness was fairly evenly distributed, with summer flounder only accounting for less 

than 10 percent of the total richness (Table 4). 

 

The unpartitioned dataset for the gradient boosting analysis consisted of 598,513 rows and 110 

columns (Appendix I). Partitioned datasets were of varied sizes according to fishery type and 

catch disposition (Table 2).  

 

Catch Discarded Dataset 

 

Gradient boosting results for sea bass fishery, discarded bycatch showed temperature, year, and 

the species category shark to be the most important features in determining model performance 

(Table 2) and the association with the above-median class. Temperature and year, however, 

showed a dispersed signal associated with the class. The species category shark was strongest 

showing positive association with the above-medial class and category squids were strongly 

negative (Figure 2). 

 

For the summer flounder fishery, the most important features for model performance were 

temperature, year, and longitude. Temperatures lower than 3.3 Celsius showed the strongest 

positive association with the above-medial class and species category squid the strongest 

negative association. Temperatures higher than 3.8, conversely, showed a strong negative 

association with the above-median class (Figure 3).  

 

For the spot dataset showed temperature and year as the strongest features for model 

performance. Categories shark and squid were the strongest positive and negative, respectively, 

associations with the above-median class (Figure 4). The shortfin squid fishery showed 

temperature and year to be the strongest features determining model performance with species 

category squid as the strongest negative association and longitude larger than 70.25o W as the 

strongest positive association with the above-median class (Figure 5).  
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Catch Kept Dataset 

 

For sea bass fishery, species categories squid and sea bass were the strongest features, both 

positively associated with the above-median class (Figure 6). For this dataset, the species 

category flounder was the strongest feature determining model performance, also showing a 

strong positive association with the above-median class (Figure 7). The spot dataset for this 

disposition showed species category scup to be the most influential feature for model 

performance and strongest positive association with the above-median class (Figure 8). Species 

category squid was the strongest feature for model performance, showing the strongest positive 

association with the above-median class (Figure 9). 

 

Species Richness Dataset 

 

For the species richness dataset, temperature, year, and longitude were the strongest features 

toward model performance. Recent years, 2018-, had the largest positive association with the 

above-median class and longitude west of 71.25o W the largest negative association. 

Additionally, longitudes east of 73.25 to 71.75o W had the second largest positive association 

and years before 2009 had the second largest negative association with the above-median class 

(Figure 10). 

 

Discussion 

 

The findings of this study point to the promise of using ML approaches for describing contrasts 

in bycatch data for fisheries in the mid-Atlantic using abundance and taxomonic richness 

metrics. We show that ML approaches can assist in understanding contrasts in bycatch data from 

four commercially important stocks in the United States Mid-Atlantic eastern coast and that there 

are pronouced variations in the temporal and spatial patterns of bycatch in the region. We also 

extend the promise of ML approaches to data collections and tools that might further support and 

enhance the quality of data gathered from on-board observers programs for more effective 

fisheries management. 

 

Catch Discarded Dataset 

 

For datasets reflecting discarded catches, the above-median class for black seabass bycatch 

weights was positively associated with the shark and sea robin species categories, and negatively 

with the squid category. Larger black seabass bycatches, therefore, were associated with 

bycatches of species from the shark, sea robin, and squid categories, potentially reflecting black 

seabass co-ocurrence with the latter two fish species at least in the juvenile phase, the 

commercially illegal size black seabass brought on board. 

 

The category squid was primarily negatively associated with the summer flounder above-median 

bycatch weight class, with the categories hake and scup following in that order. Catching higher 

weights of summer flounder as bycatch, as the commercially illegal-size individuals, was 

accompanied with lower catches of squid, hakes, and scup. A possible explanation for the 

negative association are interactions between gear selectivity and seasonal changes in species 
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distribution leading to seggregation of species-specific populations of demersal fish (Shepherd 

and Terceiro 1994; Gabriel 1996; Link et al. 2002). Small-scale changes in habitat use within an 

area and season have been reported for scup and summer flounder, where one species might 

inhabit sandy bottoms, whereas another found in hard bottoms (Shepherd and Terceiro 1994). 

Such patterns of occurrence and habitat preferrences might have accounted for the observed 

associations in the summer flounder discards dataset. 

 

For scup, the categories shark showed a positive and squid a negative association with the above-

median bycatch weight class. A co-occurrence of sharks and scup, together with distinct habitat 

segreggations with squids might be expected for scup. 

 

Finally, for the shortfin squid dataset, only the category squid was negatively associated with the 

above-median bycatch class. Discarded catches for the shortfin squid fishery were, therefore, the 

cleanest and most obvious, mostly comprising commercially illegal size species in the category 

squid, driving down the bycatch weights of the target shortfin squid.  

 

Catch Kept Dataset 

 

The analyses on the datasets for species kept for commercialization showed the ML results for 

feature importance and directionality to be more consistent and intuitive. For black seabass 

retained, categories squids, black seabass, and flounders, in that order, showed the strongest 

associations with the above-median class, indicating that larger black seabass catches are 

associated with species belonging to those categories. This latter finding shows that the black 

seabass fishery overlaps the high value non-target stocks of squid and flounders. At least 

seasonal, black seabass co-inhabit with those species as competitors for habitat and food (Musick 

and Mercer 1977; Garrison and Link 2000; Collette and Klein-Macphee 2002), which may at 

least partly explain the findings of this study. For management purposes, squid and flounders 

need to be taken into account in any plan to avoid potential knock on effects on the target species 

by overharvest of the legal non-target fish. 

 

As for the discard datasets above, the shortfin squid and also the summer flounder fisheries was 

the cleanest in terms of bycatch according to the dataset of fish kept for commercialization. The 

more species kept belonging to the class squid, the higher the catches of shortfin squid, an 

obvious and expected finding. Cleaner bycatch for the squid fishery is in  line with expectation. 

To keep catch quality, squid fishing in the study area is done mostly using large-mesh bottom 

trawls (Arkhipkin et al. 2015; Lowman et al. 2021). Fish trawl nets, with smaller mesh sizes, 

may damage the squid’s skin and mantle, thus lowering market value. Large-mesh trawls are 

more selective, partly explaining the clean catches reflected by the discard data for shortfin 

squid.  

 

For the summer flounder and scup fisheries, the same patterns as for shortfin squid emerged, 

with the addition of a negative association between catches of the target species and species of 

the category squid. The higher the catches of squid species, therefore, the lower the catches of 

summer flounder and scup. The black seabass fishery, conversely, showed an inverse effect. The 

higher the catches of species of the squid category, the higher were the catches of black seabass, 

providing evidence that squid are harvested along with black seabass. 
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Species Richness Dataset 

 

No clear patterns in species richness were observed from the bycatch analysis. Worth mentioning 

was the increase in the number of species harvested from 2018 onwards. Alternatively, a low 

species richness was associated with longitudes toward the western areas, offshore habitats, 

spanned by the dataset. This latter was expected, as offshore habitats may offer less habitat 

complexity and, therefore, species richness than habitats closest to shore. Overall, however, there 

were no indications that species richness has changed over the years or that there are any key 

areas of high species richness from the dataset analysed. 

 

Machine Learning as an Alternative Analytical Framework 

 

Although the ML analyses showed intuitive results, there were findings that departed from 

intuition when considering only traditional analytical approaches. The ML analyses on discard 

characteristics indicated that sea surface temperature and the categorical varaible year were 

consistently important features in classifying weight of bycatch. We note that the interpretation 

of these patterns should be approached with caution. Classification using the machine learning 

algorithm of this study arrives at an outcome by assessing the importance of features taking each 

individual sample (row in the data table) and predicting its class membership independently of 

any other sample (Deisenroth et al. 2020). When a feature is important, it is possible that the 

direction of effect of a feature on the class, in this study’s case the below or above median, is not 

consistent among samples. As an example, two samples may produce a high rank for a feature 

importance, but in opposite directions. To remedy for this effect, assessing the directionality of a 

feature was needed. For the analyses on discards, feature directionality exhibited this unwanted 

phenomenon. Both temperature and year showed strong uncertainty as to directionality. When 

only looking at feature importance, considering them irrespective of their levels and direction, 

the sum of their effects, across all observations, was strong because of the individual 

contributions from each sample, making the feature an important one in determining a 

classification. If the objective of the ML analyses were to develop a classifier for predicting 

below- and above-median bycatch weights, no further interpretation would be needed. If, 

however, the objective is an understanding of which factors are important in determining discard 

patterns, as in this study, further interpretations of ML outcomes must be sought. Features 

temperature and year used in the discard datasets, therefore, represent variable and uncertain 

factors when it comes to determining discard abundance and should, therefore, be interpreted 

with caution. 

 

Even with the encouraging results from the gradient boosting ML approach used in this study, 

suggestions for further improvements may be offered. Providing fine-grained vessel positioning 

may aid fisheries management decisions by better classifying movement patterns into activities 

associated with fishing and non-fishing practices. With the advent of affordable, off-the-shelf 

global positioning devices, detailed information on the spatial dynamics of fishing effort may be 

accurately estimated with classifiers as used in this study for small- and large-scale fisheries 

worldwide. Moreover, equipping vessels with cameras may also assist in estimating bycatch 

amounts. Camera images may be readily analyzed with computer vision approaches, such as 

deep learning algorithms (LeCun et al. 2015), to automate data collection, allowing for 
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widespread coverage of bycatch data (Khokher et al. 2021). Computer vision has been 

successfully used in fish identification (Ditria et al. 2020), estimation of fish abundance (Tseng 

and Kuo 2020), and length distributions (White et al. 2006), often surpassing accuracy by human 

experts. Of similar promise for fisheries bycatch management are data gathered from acoustic 

backscatter signals for estimating the fate of discards. Fisheries acoustics are an important source 

for estimating stock abundance (Simmonds and MacLennan 2008; Koslow 2009; Trenkel et al. 

2011) and may become a centerpiece in EAFM if predator-prey dynamics, biomass, and spatial 

distributions are estimated on finer resolutions and wider scales. Using ML techniques for 

analyzing acoustics data, especially supervised learning (Jiang et al. 2020), has shown promise in 

classifying bottom types in north African fisheries grounds (Sarr et al. 2021) and called the 

attention of managers and regulators as to the possibilities of such data in fisheries applications 

(Handegard et al. 2021). Acoustic data groundtruthing for labeling may initially be time 

consuming, but the rewards are justified, given the benefits of automation in data generation and 

the increasingly higher accuracy of classifiers enabling better estimates of fisheries statistics 

from acoustic datasets. 

 

Machine learning approaches to analysing fisheries data will likely not replace traditional 

modeling methods. In combination, traditional modeling and ML may capture enough of the 

complexities and dynamics of ecological processes determining catch abundances to provide 

robust advice for sustainable harvest. A trend in augmenting the performance of traditional 

fisheries stock assessment and estimation models using ML has been observed recently (Pérez-

Ortiz et al. 2013; Syed and Weber 2018; Kaemingk et al. 2020; Yang et al. 2020; Chan and Pan 

2021), attesting to the applicability of ML algorithms to fisheries data. With the increasing 

prospect of automation in fisheries data collection, ML techniques may be the only feasible 

approach for data processing and analysis, as dataset will become larger and more complex. 

Automation, however, come with the cost of transparency, especially when deep learning 

techniques are used for classification. Because decisions based on such analysis most likely will 

have large ecological, economic, and social impacts, explaining the results of ML techniques in a 

clear and understandable way is a must. Many ML techniques are defined as opaque, whereby 

how results are obtained are not clearly understood. Using mechanisms for explaining the results 

of an analysis, as done in this study, must accompany any opaque ML technique if the benefits of 

this new and ever growing analytical alternative are to be fully realized. 

 

Conclusions 

 

The results of this study indicate that ML alternatives may successfully supplement traditional 

analytical approaches to fisheries research. Results from ML model runs were able to capture 

general expected patterns in harvest according to target species. Given the inherent uncertainty 

associated with fisheries data, these results are encouraging for the adoption of ML techniques to 

the field. The adoption of ML into the fisheries field, however, needs to be done carefully, 

always with the analytical objective in mind. Machine learning techniques are mostly for the 

objective of classification, whereas in fisheries, datasets are largely for explanation, inference, or 

predicting over continuous valued outcomes. Adopting ML techniques blindly, without 

consideration of method explainability, may be a fruitful approach is classification is the only 

goal. When decisions couched on understanding of ecological processes undelying analyses are 

the goal, a clear knowledge of how findings are derived is a must. Using ML techniques must, 
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therefore, be used in conjunction with traditional statistical analyses or extended to add 

transparency, beyond only classification, to better explain model outcomes, as done in this study. 
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Tables 

 

Table 1. Information collected by the NOAA Northeast Fisheries Science Center Observer and 

At Sea Monitoring Program. 

 

Predictor Data 

Transformation 

Description 

Used in this study 

Habitat One-hot encoded; 

one feature 

Inshore or offshore 

Statistical 

Area 

One-hot encoded; 

XX features 

Sampling bands along the North-South direction; latitude 

intervals south of 34.25o N; 34.25o N -37.24o N; 37.25o N 

-39.24o N; 39.25o N -40.24o N; 40.25o N -41.24o N; north 

of 41.24o N 

Quarter 

Degree Square 

Integer  

Year Integer 2003-2020 

Quarter Integer 1-4, for each year quarter 

Latitude Decimal 34.75, 35.25, 35.75, 36.25, 36.75, 37.25, 37.75, 38.25, 

38.75, 39.25, 39.75, 40.25, 40.75, 41.25, 41.75, 42.25, 

42.75o N 

Longitude Decimal 75.75, 75.25, 74.75, 74.25, 73.75, 73.25, 72.75, 72.25, 

71.75, 71.25, 70.75, 70.25, 69.75, 69.25, 68.75, 68.25, 

67.75, 67.25, 66.75, 66.25o W 

Bycatch 

disposition 

Alphanumeric Catch kept or discarded; used to partition datasets 

Cod mesh size Decimal 56, 120, 133, 151 mm 
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Gear type One-hot encoded; 

3 features 

Fish, Ruhle, Scallop,Twin 

Target species Alphanumeric 4 fisheries, used to partition datasets 

Water 

temperature 

Decimal Obtained from NOAA buoys 

Excluded from this study 

Link fields   

Program   

Nem area   

Observer Flag   

Beginning 

Coordinates 

  

Fish 

Disposition 

  

DRFlag   

Weight Type   
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Table 2. Model performance metrics showing precision, recall, and F1-ratio for label 

above/below median value of the four fishery and two dispositions in the NE demersal finfish 

fishery. 

 

Species Catch 

Disposition 

Number 

of 

records 

Number 

of 

features 

Accuracy Precision 

above/below 

median 

Recall 

above/below 

median 

F1-Ratio 

above/below 

median 

Sea Bass Discarded 18,490 70 0.68 0.70/0.66 0.69/0.67 0.70/0.67 

Kept 11,435 59 0.81 0.81/0.81 0.70/0.88 0.75/0.84 

Summer 

Flounder 

Discarded 140,547 97 0.69 0.70/0.67 0.72/0.65 0.71/0.66 

Kept 68,460 88 0.79 0.75/0.81 0.68/0.86 0.71/0.83 

Scup Discarded 36,276 72 0.66 0.67/0.65 0.67/0.65 0.67/0.65 

Kept 24,084 62 0.75 0.74/0.76 0.69/0.80 0.72/0.78 

Short fin 

squid 

Discarded 193,539 110 0.70 0.73/0.67 0.78/0.60 0.75/0.63 

Kept 85,394 86 0.76 0.69/0.81 0.70/0.80 0.69/0.81 

Biodiversity n/a 10,041 85 0.73 0.74/0.73 0.73/0.74 0.74/0.73 
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Table 3. Catch percentages and weights by bycatch disposition for four target species in the NE 

US finfish fishery. 

 

Species Percent Kept Discarded 

BSB as target 

Centropristis striata 32.79 664.55 124.11 

Squalus acanthias 25.46 10.68 601.82 

Stenotomus chrysops 15.38 257.75 112.10 

Prionotus evolans 7.00 2.63 165.85 

Prionotus carolinus 5.43 0.01 130.49 

Paralichthys dentatus 4.64 82.96 28.76 

Beringraja binoculata 1.66 7.91 32.05 

Summer Flounder as target 

Paralichthys dentatus 39.82 4,311.68 190.37 

Squalus acanthias 11.24 70.16 1,200.91 

Beringraja binoculata 8.24 244.92 686.60 

Raja eglanteria 7.19 34.36 778.25 

Stenotomus chrysops 5.09 353.52 221.44 

Prionotus carolinus 4.82 1.82 543.51 

Lophius piscatorius 3.00 155.75 183.56 

Dipturus laevis 2.48 0.76 280.11 

Limulus polyphemus 2.14 23.23 219.23 

Mustelus canis 1.89 49.89 163.36 

Prionotus evolans 1.80 5.67 197.85 

Centropristis striata 1.55 99.42 75.53 

Placopecten magellanicus 1.29 31.47 114.76 

Scophthalmus aquosus 1.17 4.03 128.57 

Merluccius bilinearis 1.13 85.92 41.81 

Spot as target 

Stenotomus chrysops 31.38 0.47 - 

Morone saxatilis 17.44 - 0.45 

Mustelus canis 17.39 0.04 0.41 

Cynoscion regalis 12.55 0.32 - 

Pomatonus saltatrix 10.18 0.26 - 

Paralichthys dentatus 6.10 0.16 - 

Centropristis striata 1.78 0.05 - 

Squalus acanthias 1.77 - 0.05 

Squid as target 

Illex Illecerosa 61.01 111.00 0.40 

Scomber colias 16.92 29.87 1.02 
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Doeyteuthis pealeii 15.42 27.99 0.16 

Stenotomus chrysops 1.81 0.58 2.71 

Beringraja binoculata 1.15 0.02 2.07 

Squalus acanthias 0.00 - 1.89 
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Table 4. Species richness from the NOAA Northeast Fisheries Science Center Observer and At 

Sea Monitoring Program; years 1994-2020; only species larger than 1% total data representation 

shown. 

 

Species  Percent Number 

Paralichthys dentatus  9.58 61,435 

Doeyteuthis pealeii  8.00 51,348 

Stenotomus chrysops  6.65 42,637 

Peprilus triacanthus  5.68 36,456 

Centropristis striata  5.37 34,440 

Lophius piscatorius  5.26 33,715 

Merluccius bilinearis  4.96 31,836 

Hippoglossina oblonga  3.74 23,967 

Squalus acanthias  3.71 23,773 

Prionotus carolinus  3.45 22,119 

Beringraja binoculata  3.31 21,225 

Urophycis regia  3.28 21,042 

Scophthalmus aquosus  2.89 18,551 

Prionotus evolans  2.67 17,143 

Mustelus canis  2.55 16,337 

Illex Illecerosa  1.96 12,571 

Raja eglanteria  1.95 12,481 

Pseudopleuronectes 

americanus  

1.89 12,144 

Pomatonus saltatrix  1.80 11,560 

Homarus americanus  1.67 10,684 

Urophycis chuss  1.59 10,193 

Dipturus laevis  1.52 9,758 

Scomber scombrus  1.16 7,421 

Libinia emarginata  1.10 7,055 

Limulus polyphemus  1.02 6,531 
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Figures 

 

 
 

Figure 1. NOAA Northeast Fisheries Science Center Observer and At Sea Monitoring Program 

are of coverage. 
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Figure 2. Feature importance after XBoost machine learning analysis for black seabass 

disposition discarded 
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Figure 3. Feature importance after XBoost machine learning analysis for summer flounder 

disposition discarded 
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Figure 4. Feature importance after XBoost machine learning analysis for scup disposition up 

discarded. 
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Figure 5. Feature importance after XBoost machine learning analysis for shortfin squid 

disposition discarded 
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Figure 6. Feature importance after XBoost machine learning analysis for black seabass 

disposition kept 
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Figure 7. Feature importance after XBoost machine learning analysis for summer founder 

disposition kept 
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Figure 8. Feature importance after XBoost machine learning analysis for scup disposition kept 
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Figure 9. Feature importance after XBoost machine learning analysis for shorfin squid 

disposition kept 
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Figure 10. Feature importance after XBoost machine learning analysis for species richness. 
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Appendix I. NOAA Northeast Fisheries Science Center Observer and At Sea Monitoring 

Program species categories used in this study. 

 

 

Category Example Species 

ALEWIFE Alosa pseudoharengus 

ANCHOVY Anchoa mitchilli 

ANCHOVY Anchoa hepsetus 

ARGENTINE Argentina silus 

BARRELFISH Hyperoglyphe perciformis 

BENTHIC 

INVERTEBRATE 

Littorina littorea, Mytilus 

edulis 

BLUEFISH Pomatonus saltatrix 

BLUESPOTTED 

CORNETFISH 
Fistularia commersonii 

BOARFISH Antigonia capros 

BONITO Sarda sarda 

BULLET MACKEREL Auxis rochei 

BUTTERFISH Peprilus triacanthus 

CLAM 
Tegillarca granosa, Spisula 

solidissima, Arctica islandica 

COBIA Rachycentron canadum 

COD Gadus morhua 

CODLING Pseudophycis bachus 

CRAB 

Callinectes sapidus, Chaceon 

quinquedens, Limulus 

polyphemus, Ovalipes 

ocellatus 
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Category Example Species 

CROAKER Micropogonias Undulatus 

CUSK-EEL Tautogolabrus adspersus 

CUSK-EEL Brosme brosme 

CUSK-EEL Brosme brosme 

DORY Zeus faber 

DRUM 
Pogonias cromis, Sciaenops 

ocellatus 

EEL 
Anguilla rostrata, Nemichthys 

scolopaceus 

FLOUNDER 

Hippoglossoides  

platessoides, Hippoglossina 

oblonga, Paralichthys 

lethostigma 

GRENADIER 
Nezumia bairdii, Macrourus 

berglax 

HADDOCK Melanogrammus aeglefinus 

HAGFISH Myxine glutinosa 

HAKE 

Macruronus novaezelandiae, 

Phycis chesteri, Urophycis 

chuss, Merluccius australis 

HERRING 
Clupea harengus, Alosa 

aestivalis 

HOGFISH Lachnolaimus maximus 

JACK Caranx hippos 

KINGFISH 
Menticirrhus saxatilis, 

Menticirrhus americanus 

LADYFISH Elops saurus 

LAMPREY Petromyzon marinus 
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Category Example Species 

LOBSTER Homarus americanus 

MACKEREL 
Scomber scombrus, Scomber 

colias 

MENHADEN Brevoortia tyrannus 

MONKFISH Lophius piscatorius 

MOONFISH Selene setapinnis 

MULLET Mugil caphalus 

MUMMICHOG Fundulus heteroclitus 

OCEAN POUT Zoarces americanus 

PERCH Morone americana 

PIGFISH Bodianus 

PILOTFISH Naucratinae ductor 

PINFISH Lagodon rhomboides 

POLLOCK Pollachius pollachius 

POMFRET Taractichthys longipinnis 

POMPANO Alectis ciliaris 

PUFFER 
Chilomycterus schoepfi, 

Sphoeroides maculatus 

QUAHOG Arctica islandica 

REDFISH Sebastes fasciatus 

RIBBONFISH Zu cristatus 

ROCKLING Enchelyopus cimbrius 

ROSEFISH Heliconlenus dactylopterus 

ROUGHY Gephyroberyx 
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Category Example Species 

RUNNER Caranx crysos 

SAURY Scomberesox saurus 

SCAD 
Selar crumenophthalmus, 

Decapterus macarellus 

SCALLOP 
Argopecten irradians, 

Placopecten magellanicus 

SCULPIN 
Myoxocephalus 

octodecemspinosus 

SCUP Stenotomus chrysops 

SEA BASS Centropristis striata 

SEA POTATO Echinocardium cordatum 

SEA ROBIN 
Peristedion miniatum, 

Prionotus carolinus 

SEATROUT Cynoscion 

SHAD 
Alosa sapidissima, Dorosoma 

petense 

SHARK 

Squatina squatina, 

Rhizoprionodon terraenovae, 

Carcharias taurus 

SHEEPSHEAD Archosargus probatocephalus 

SHRIMP 

Pandalus borealis, Pleoticus 

robustus, Lysmata 

amboinensis 

SKATE AND RAY 

Menidia menidia, Dipturus 

laevis, Raja eglanteria, 

Leucoraja garmani, 

Rhinoptera bonasus 

SLENDER SNIPEFISH Amblyraja radiata 

SMELT Beringraja binoculata 
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Category Example Species 

SNAIL Macroramphosus gracilis 

SNAKEBLENNY Osmerus mordax 

SNAPPER Lutjanus campechanus 

SNIPEFISH Leiostomus xanthurus 

SPOT Rhomboplites aurorubens 

SQUID 
Doeyteuthis pealeii, Illex 

Illecerosa 

STARGAZER Astroscopus guttatus 

STRIPED BASS Morone saxatilis 

TAUTOG Tautoga onitis 

TILEFISH 

Caulolatilus microps, 

Lopholatilus 

chamaeleonticeps 

TOADFISH Opsanus tau 

TUNA 

Thunnus thynnus, Euthynnus 

alletteratus, Thunnus 

albacares 

WEAKFISH Cynoscion regalis 

WHELK 

Busycotypus canaliculatus, 

Busycon carica, 

Sinistrofulgur perversum 

WHITING Merlangius merlangus 

WRECKFISH Polyprion americanus 

WRYMOUTH Cryptacanthodes maculatus 
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